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Figure A1: Small excerpt from the 2003 Michelin map for Southern Africa, showing south-
ern Rwanda.

A1 Digitizing road maps

A1.1 The Michelin map corpus

Our source for road network data is the African Michelin map corpus, a collection of

large topographical maps at a resolution of 1:4,000,000, showing detailed information on

transport infrastructure with a consistent cartographic symbology. While coverage before

the 1960s is sporadic, Michelin has covered the entire African continent at intervals of at

most 5 years beginning in 1966. This makes the Michelin corpus an unparalleled source

for time-variant road-network information. In the present paper, we make use of the 6

maps published in 1966 and 1990.

We digitize this map collection automatically. Apart from being relatively cheap, the

automatic digitization approach features a number of additional benefits:

• Consistency: The cartographic information is extracted in a highly consistent man-

ner, avoiding errors due to human fatigue and less-than-perfect inter-coder reliability.

• Replicability: The entire data set can be reproduced at will.

• Extendability: After the initial system is set up, the marginal costs of adding new

cartographic material (including from other sources) are negligible.

A1.2 Map digitization as a computer vision task

A critical first step for extracting information from geospatial imagery is to distinguish

between areas representing objects of interest and background. Roads in the Michelin maps

are drawn as complex features with multiple color and line-patterns, and often interrupted

by other objects (see Figure A1). Therefore, heuristic algorithms that distinguish only

colors or lines fail to classify roads correctly. Instead, we implement a method that “looks

at” entire map segments at once, and is able to distinguish between lines and other object

types using contextual visual information.

To do so, we borrow from recent advancements in the machine learning literature and

implement a Convolutional Neural Network -based system for road network extraction.
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Convolutional Neural Networks (CNNs) have recently emerged as a powerful method for

computer vision applications, outperforming other approaches across a variety of classifi-

cation problems (LeCun, Bengio and Hinton 2015). Fundamentally, CNNs are feedforward

artificial neural networks (ANNs). They consist of multiple layers of neurons, each neuron

representing a non-linear function associated with a trainable weights vector, accepting a

linear combination of inputs from the previous layer, and outputting a scalar that is passed

on to the next layer.1 In the language of ANNs, the vector of predictors associated with

a single observation is then called the “input layer”, whereas the prediction produced by

the ANN is called the “output layer”. Note that in computer vision problems, the input

layer typically consists of raw image data, structured as a pixel-image with multiple color

bands.

While the most basic variants of feedforward ANNs feature fully connected architec-

tures where each neuron accepts inputs from all neurons of the previous layer, convolu-

tional neural networks restrict the visual receptive field of each neuron to a small, spatially

contiguous patch of input data, thus retaining the spatial structure of the inputs. More-

over, CNNs feature a shared-weights architecture, whereas neurons reuse the same set of

parameters to “look” at all locations of the input image. This ensures that CNNs are

shift-invariant: They are able to detect objects regardless of their spatial location in the

input image.

Neurons in CNNs typically implement two types of operations. A convolution opera-

tion, computing the dot product between a patch of input data and the neuron’s weights,

and a pooling operation, which downsamples the input image to a lower resolution by some

given factor. Productive CNNs typically feature multiple convolution- and pooling-layers

in succession, giving rise to a complex non-linear function that transforms a given input

image into a series of images with decreasing resolution, but higher depth, called feature

maps.2 This architecture gives rise to the key advantage of CNNs: their ability to learn

features relevant for classification from raw, unprocessed input imagery (Zeiler and Fergus

2014). Hence, instead of the researcher having to pre-process the input data and extract

variables that are useful for classification (e.g. whether particular shapes or color patterns

are present), CNNs are capable of learning important features by themselves. The layers

close to the input image recognize low-level features such as edges or blobs of a particular

color, which are then fed to the higher-level layers that capture more complex features at

lower resolutions, like specific line patterns or shapes with particular textures.

For image segmentation, Shelhamer, Long and Darrell (2017) have recently proposed

what they call a fully convolutional approach. Here, the feature maps produced by the

regular convolutional and pooling layers are used as inputs for a set of upsampling, or

deconvolutional layers. These consist of neurons that implement a reverse convolutional

operation, mapping lower resolution feature maps onto higher resolution outputs via a

1The following discussion of ANNs and CNNs draws from Bengio, Goodfellow and Courville (2016, ch.

6 & 9).
2Here, “depth” refers to the third dimension of an image. An RGB image has depth 3.
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Figure A2: Architecture of our custom fully convolutional neural network.

trained interpolation function. Hence, fully convolutional neural networks (FCNNs) have

an “abstraction stage”, where convolutional and pooling layers learn to recognize complex

image features, and a “drawing stage”. Here, the information from the lower-resolution

feature maps is mapped back onto the scale of the original input image, yielding a full

semantic segmentation.

A1.3 Our FCNN: Architecture and training

To solve the semantic segmentation problem on the Michelin map material we implement

a version of Shelhamer et al.’s FCNN model that takes RGB image patches of dimension

512× 512× 3 pixels as input, and maps them onto output segments of size 512× 512× 17.

The output image depth arises from the fact that Michelin identifies 16 road categories.3

The precise architecture of our model is shown in Figure A2. The model is described in

canonical notation, see Bengio, Goodfellow and Courville (2016) and Shelhamer, Long and

Darrell (2017) for more information.

We pursue a transfer-learning approach and pre-train the FCNN on 2000 artificial

map images.4 These are color-images of dimension 512 × 512 × 3 that superficially look

like real road maps, but which we create programatically by drawing arbitrary planar

networks together with other map-like shapes and text labels of arbitrary color, size,

orientation, etc. Each simulated map image is paired with a “ground truth” label of

dimension 512× 512× 2 that highlights the location of the road-network to be detected.

With the pre-trained model, we then proceed to the training of the main model using

actual, hand-annotated training data from the Michelin maps.5

Interpreting trained artificial neural networks is notoriously difficult, as the learned

3An additional reference category identifies background pixels.
4For pre-training, the outcome layer is only of depth two (instead of 17) because construct the artificial

training labels such that they only identify the presence of roads, but not their type.
5All layers up to the second-to-last one (exclusive) are initialized with pre-trained weights, whereas the

weights of last two layers are initialized randomly. For training both the initial “artificial” model as well

as the final model, we use the stochastic gradient descent (SGD) based optimizer introduced by Kingma

and Ba (2014) with a batch-size of 2.
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parameters have little intuitive meaning by themselves. However, one commonly employed

strategy is to show the neural activations of the network’s feature maps for some input

image. Six such feature maps shown in Figure A3 demonstrate how different neurons

capture different types of information. The feature maps in the top row appear to recognize

numbers, those in the bottom row identify road-related features. They also show that

feature maps at lower resolutions tend to capture more abstract, higher-level objects,

reflecting the hierarchical logic of feature detection in CNNs.

Figure A3: Selected feature maps from the trained FCNN.

Finally, it is instructive to demonstrate the trained FCNNs predictive performance

visually. Figure A4 shows an excerpt from a 1966 map segment for Southern Nigeria

(left panel), together with the corresponding road predictions obtained from the trained

FCNN model (middle panel). The different colors in the predicted image correspond to

different road types. We highlight that the FCNN is able to distinguish between even

subtle differences in line types, e.g., lines of the same color, but with different border

thickness.

Figure A4: Predictive performance of the digitization procedure.

A1.4 Vectorization and results

Given the FCNN predictions, we implement and apply a four-step algorithm to convert

the pixel-based FCNN output into vectorized road-network data:
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Binary Categorical

Precision 0.988 0.888
Recall 0.986 0.964

Table A1: Evaluation statistics for the full digitization pipeline based on a hold-out sample.

1. The Zhang-Suen topological thinning algorithm is applied to the input images, lead-

ing to single-pixel-width road representations.

2. The thinned images are fed to a line-tracing algorithm, transforming the road net-

work information to a vector-based representation.

3. A line-splicing algorithm is then applied to fill small, unlikely gaps in the vectorized

road network.

4. A sequential, hidden-Markov style model is used to smooth the road type classifica-

tion, leading to the removal of short segments with misclassified road types.

The right-most panel of Figure A4 illustrates the result of this vectorization procedure.

To assess the accuracy of the digitization pipeline, we generate vectorized predictions for

two hand-coded hold-out maps, each covering about 1000 square kilometers. We split

the ground-truth and predicted networks into 5 km long road segments and calculate two

evaluation metrics. Precision measures the proportion of predicted road segments that

are proximate to a ground-truth road segment. Recall measures the proportion of ground-

truth road segments that are proximate to a predicted road segment. We use 5 km error

bands to establish whether two road segments are proximate. We also calculate variants

of these metrics that take road types into account. Here, predicted and a ground-truth

segments are only coded as proximate if they are also of the same road type.6

The result of this evaluation exercise is summarized in Table A1. We find that our

digitization procedure is highly accurate. Over 98.8% of all extracted roads are present

in the Michelin maps, and 98.6% of all Michelin roads are extracted. The corresponding

figures are somewhat lower if we take road categories into account, but still 88.8 and 96.4,

respectively. We note, however, that in those cases where the model misclassifies the road

type, the error is typically small. Across all cases where roads are correctly extracted

but assigned the wrong category, the mean absolute error on the ordinal road-type scale

is 1.38. In other words, misclassifications typically take the form of a partially improved

road erroneously being classified as an improved road, rather than an earth road being

mislabeled as a highway. The lower category-precision is due to very small stretches of

missclassified roads that should only marginally affect the estimates of travel times. In

addition, we see no reason to believe that the FCNN introduces non-random errors.

6Note that for this evaluation, we employ the 6-category road type coding used in the paper, not the

16-category coding used during digitization.
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A2 Constructing and validating road networks

A2.1 Network construction

We transform the Michelin data into a planar graph that uniformly covers each African

country. We do so in a step-wise manner:

1. Foot-path network: The basis of our planar graph consist of a network of 8-

connected ‘foot-paths’, shown for the case of Uganda in Figure A5a. The graph’s

nodes are the centroids of a raster of population estimates from the HYDE 3.1 data

(Klein Goldewijk, Beusen and Janssen 2010) for 1960 at a resolution of .1667× .1667

decimal degrees (or ca. 20 km at the equator). Each node is connected with a

foot-path to its 8 nearest neighbors using queen moves. This setup allows for much

more flexible applications than travel-query APIs such as Google Maps which do not

process queries from/to points that are too distant from the next road.

2. Adding roads: We overlay the basic foot-path network with the spatial lines ex-

tracted from the Michelin maps (see Figure A5b). We create additional nodes wher-

ever two roads or foot-paths cross, thus retaining the planar graph property. These

additional nodes’ purpose is to serve as intersections. They are not associated with

any population data. Hence, travel between two populated nodes will typically start

by taking a foot-path to a road, and end by traveling from a road to the target node

on another foot-path.

3. Calculating edge weights: Each edge on the network is associated with an edge

weight which is equivalent to the estimated time it takes to traverse the edge. Before

assigning these edge weights, we first collapse the 16 road types on the Michelin maps

to 6 main categories. We obtain estimated travel speeds for each of these categories

by querying the mapping tool on the Michelin website (www.viamichelin.com. For

each road category, we identify a random selection of trips on roads of that category,

and record the travel speed returned by the Michelin querying tool (see Figure A6a).7

We set the traveling speed on foot-paths to 6 km (about 4 miles) per hour. This

corresponds to walking-time estimates on www.maps.google.com (see also Jedwab

and Storeygard (2016)).

A2.2 Validation

We validate the travel times computed on our Michelin-based network using the Google

Maps API. Since Google only offers contemporary data, we base our comparison on road

7Note that the average speed returned for ‘highways’ is somewhat lower than that returned for ‘hard

surface’ roads. Highways are almost non-existent in Africa. They constitute only .06 percent of the total

road mileage observed in 1966 and cluster in the immediate neighborhood of large cities where speed is

slowed by congestion. To preserve the rank-ordering of roads (which is important for our road simulation),

we recode all highways as hard surface roads.
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(a) Foot-path network (b) ... adding Michelin roads observed in 1966

Figure A5: Constructing road networks that regularly cover geographical space. Addi-
tional vertices are added to the graph where foot-paths and roads intersect.

networks constructed with Michelin data from 2003, the most contemporary source at

our disposal. For each country, we draw 50 source- and 50 destination nodes, each with

a probability relative to a node’s population size.8 These nodes make up the start- and

end-points of 50 paths, for which we compute both foot-travel and road-travel times on

our network. We query the travel time between the two coordinates on the Google Maps

API. Since the API allows only the search of geographical paths which start and end in

close proximity to a road, only 60% of our queries are successful.

We compare the results from the 1,416 successful queries with our Michelin-based

computations. Figure A6b plots the two data sources against each other. The figure

shows a high correlation of ≈ 1 which is least precise at low travel times. This imprecision

likely results from the fact that, in certain areas, Google Maps uses data on very small

roads whereas our Michelin-based networks approximate such roads as ‘foot-paths’.

This comparison does not only highlight the quality of our measurement of travel

times. It also sheds light on one of the key shortcomings of Google Maps as an alternative

resource for measuring travel times. Since Google Maps does not allow for querying paths

between arbitrary coordinates, but makes such searches contingent on the presence of

roads, it is impossible to use their services for our purposes.

8Fewer if the country in question does not have 50 populated nodes.
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(a) Estimate of travel speed on different road
types

(b) Comparison of travel times on the Michelin-
based road network (roads from 2003) and travel
times queried from the Google Maps API.

Figure A6: Construction and validation of edge-weights.

A3 Summary statistics

Table A2: Summary statistics

Statistic N Mean St. Dev. Min Max

Challengers 31, 780 0.51 2.41 0 128
Challenger Events 31, 780 1.02 13.33 0 739
State Events 31, 780 0.99 12.86 0 881
RSC 1966 (log) 42, 878 −1.21 0.79 −4.09 0.49
State access 1966; road (log) 42, 878 −2.76 0.72 −5.06 −0.06
Internal connect. 1966; road (log) 42, 878 −1.55 0.59 −4.01 0.00
State access 1966; foot (log) 42, 878 −4.22 0.81 −5.94 −0.23
Internal connect. 1966; foot (log) 42, 878 −1.98 0.80 −4.88 0.00
State access 1880; road (sim; log) 42, 196 −2.45 0.64 −4.40 −0.11
Internal connect. 1880; road (sim; log) 42, 196 −1.35 0.67 −4.04 0.00
Distance to border 42, 851 601.64 452.68 3.80 2, 427.10
Capital dummy 42, 851 3.91 1.21 1.00 9.00
Median altitude 42, 851 1, 617.84 274.68 1, 073.75 2, 509.15
Median slope 42, 851 1, 166.26 554.99 3.24 3, 217.60
Evapotranspiration 42, 851 4.42 1.53 1.00 8.00
Precipitation 42, 851 24.85 2.89 11.32 29.94
Evapotranspiration / Precipitation 42, 851 0.36 0.15 0.00 0.80
Temperature 42, 851 0.35 0.25 0.00 0.99
Cash crop suitability 42, 878 5.83 4.08 0.0001 16.10
Agricultural suitability 42, 878 1.74 2.29 0.001 20.07
Distance to coast 42, 878 0.12 0.32 0 1
Distance to nav. river 42, 878 17.35 64.23 0.11 1, 311.14
Mineral deposit 42, 878 463.54 1, 846.02 0.003 37, 581.51
Area (1000 km2) 42, 878 178.03 1, 159.41 0.00 30, 564.21
Population (1000s) 42, 878 103.45 106.13 0.03 590.94
Urban population (1000s) 42, 878 0.03 0.16 0 1
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A3.1 Correlation between RSC measures and control variables

Table A3: Effect of covariates on RSC and its components

Dependent variable (1966; logged)
RSC State access Internal connectedness

(1) (2) (3)

State access 1966, foot (log) 0.683∗∗∗ 0.702∗∗∗ 0.019∗

(0.015) (0.015) (0.011)
Internal connectedness 1966, foot (log) −0.624∗∗∗ 0.014 0.638∗∗∗

(0.020) (0.014) (0.020)
Population (log) 0.017∗∗ 0.058∗∗∗ 0.042∗∗∗

(0.007) (0.006) (0.007)
Urban population (log) −0.009∗∗∗ 0.004∗∗∗ 0.013∗∗∗

(0.001) (0.001) (0.001)
Area (log) 0.028∗∗ −0.056∗∗∗ −0.084∗∗∗

(0.013) (0.010) (0.013)
Median altitude −0.00002 −0.0001∗∗ −0.0001∗

(0.0001) (0.0001) (0.0001)
Median slope 0.009 0.021∗∗∗ 0.013∗∗

(0.006) (0.006) (0.006)
Precipitation −0.00004 −0.0002∗∗∗ −0.0002∗∗∗

(0.0001) (0.00005) (0.0001)
Evapotranspiration −0.00004 −0.00005 −0.00001

(0.0001) (0.0001) (0.0001)
Evapotranspiration / Precipitation 0.010 0.055∗∗ 0.045∗

(0.023) (0.022) (0.024)
Temperature −0.007 −0.021∗ −0.014

(0.011) (0.011) (0.011)
Cash crop suitability 0.053 0.112∗∗∗ 0.059

(0.046) (0.042) (0.047)
Agricultural suitability 0.066∗ 0.075∗∗ 0.009

(0.034) (0.030) (0.034)
Mineral deposit (0/1) −0.063∗∗∗ 0.026 0.089∗∗∗

(0.019) (0.018) (0.020)
Distance to coast −0.005 −0.007 −0.002

(0.008) (0.008) (0.007)
Distance to nav. river −0.003 0.001 0.004

(0.005) (0.005) (0.005)
Capital dummy −0.224∗∗∗ −0.044 0.180∗∗∗

(0.036) (0.043) (0.038)
Distance to border (log) 0.012∗ 0.025∗∗∗ 0.013∗∗

(0.006) (0.006) (0.006)

Country-year FE: yes yes yes
Mean DV -1.21 -2.76 -1.55
Observations 42,851 42,851 42,851
Adjusted R2 0.931 0.932 0.879

Notes: OLS models. Two-way clustered standard errors in parentheses (ethnic group and country-
year clusters). Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A3 presents the results of a set of simple models that regress our main indepen-

dent variable, RSC, as well as its components, state access and internal connectedness, on

the full vector of control variables.

Unsurprisingly, the two ‘foot-travel’ measures of state access and internal connected-

ness that capture only geodesic distances are highly correlated with the respective measures
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computed as travel times on the road network. Furthermore, we see a range of control

variables that are correlated with our measure of RSC and its components. In particular,

we see that highly populated and smaller ethnic groups have higher levels of state access

and internal connectedness. Related to the colonial origins of road networks as tools for

resource extraction, we see that ethnic groups with high levels of cash crop suitability and

mineral deposits feature denser local road networks that increase their internal connected-

ness. Lastly, groups closer to national borders profit from less roads than groups farther

away from borders. These correlational patterns coincide with Herbst’s (2000) descriptive

evidence on road networks and state reach in Africa in general.

A4 Robustness checks

We apply an extensive set of robustness checks to our main analysis. The following pages

give an overview over the motivations, implementation, and results of each additional

test. To facilitate interpretation, most robustness checks are presented as coefficient plots,

in particular and unless otherwise noted, in Figure A7 below. Detailed reports will be

available with the replication data.

Figure A7: Coefficients of RSC in robustness checks. Bars indicate 95% confidence inter-
vals.

A4.1 Alternative dependent variables

We first gauge whether our baseline effects on the number of and violent events associ-

ated with challengers to state power are driven by rebel groups or militias, defined as

as ACLED’s class of political and ethnic militias. In its three panels, Figure A8 plots

the estimated effect of RSC on (1) the number of rebel groups and militias active in an

ethnic settlement area (first and second row), (2) the number of battles between either
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Figure A8: Coefficients of RSC when when disaggregating challengers to local state rule
into rebel groups and militias.

rebel groups or militias with both, rebel groups and militias, as well as (3) the number

of battles between state fores and rebel groups and militias. The results show that the

baseline patterns found for the aggregate composite of ‘challengers’ are not solely driven

by either rebel groups or militias.

We heed the advice of Hegre and Sambanis (2006) and subject our main model to (1)

alternative specifications of our outcomes of interest and (2) additional outcomes from

various datasets on political violence. Figure A9 plots the results for using (1) linear

models of the probability that our main outcomes take a value > 0 and (2) the logged

number of fatalities of the event types as the dependent variable. The respective results

are consistent with those that are based on pure event counts. In addition, the Figure

shows results when conducting the repeating our analyis with alternative outcome data

from the (3) ACLED (Raleigh et al. 2010), (4) UCDP GED (Sundberg and Melander

2013), and (5) SCAD datasets (Salehyan et al. 2012). The results show that low levels of

relative state capacity are robustly associated with higher event counts across almost all

categories of political violence.

Two classes of exceptions exist. First, the results show no evidence of an impact of

RSC on remote violence, i.e. aerial bombings, as measured by ACLED. This is not too

surprising, since these events are seldom and have little to do with physical accessibility.

Also, We do not find effects of RSC on the number of violent incidents committed by

pro-government militias taken from the SCAD data. These oftentimes happen in capitals,

where RSC is by definition high. The second class of exceptions consist in that, in our

instrumental variable approach, we find no evidence of an effect of RSC on (1) fatalities

of state-challenger battles and (2) UCDP GED civil war events. Both exceptions relate

to the generally more mixed results of the effect of RSC on fighting between challengers

and state forces discussed in the respective section of the main text.

Notwithstanding these deviating patterns, the results from analyzing the effect of RSC
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on alternative measures of violent events in ethnic groups highlight that challenger-related

violence in the periphery of a state also brings along other forms of political violence, most

importantly violence against civilians.

Figure A9: Effect of RSC on alternative outcome variables. Bars indicate 95% confidence
intervals.

A4.2 Alternative functional forms

Although linear count models have the advantage of allowing for a very flexible specifi-

cation of fixed effects, the bias introduced by the miss-specification of the distribution

of the dependent variables might drive our results. Figure A10 therefore presents results

based on logistic and negative binomial models that use the same vector of explanatory

variables as our main model.9 Due to computational complications in estimating such

models with a large number of country-year dummies, we do control for country- and year-

fixed effects rather than country-year fixed effects. Because our independent variables are

Figure A10: Coefficients of RSC when choosing different functional forms. Bars indicate
95% confidence intervals.

9We do not estimate Poisson models here because of the significant overdispersion of the dependent

variables.
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cross-sectional in nature, this limitation has negligable effects. The results mirror the ones

presented in the main paper, indicating that the latter are not due to the choice of linear

count models.

A4.3 Measuring RSC on 1990 road networks

In order to gauge whether the reliance on 1966 road network data significantly affects the

results, we re-estimate the baseline specifications of the naive OLS and the instrumental

variable analysis using data on the Michelin road network observed in 1990. For the IV-

specification, this implies that we simulate a new set of road networks for each country

using the road budget observed within a country’s borders in 1990, and then using the

simulation to instrument for RSC as measured on the 1990 road networks. The results of

the resulting models are plotted in the second row of Figure A7 and show no significant

deviation from the baseline estimates, except for the IV-estimate of the effect of RSC on

the number of battles between the state and its challengers which slightly decreases in

precision (p = .11) but comes with a point estimate that is equivalent to the baseline

estimate.

A4.4 Adding and dropping control variables

To account for potential omitted variable bias, we include a set of additional control

variables. These are:

• Precolonial characteristics: Data from Murdock (Murdock 1959, 1967) to account for

precolonial characteristics of ethnic groups that might affect the extent and structure

of colonial road building as well as contemporary conflict risk. In particular, we

control for precolonial (1) economic practices – ethnic groups’ dependence of hunting,

fishing, animal husbandry, and agriculture –, (2) intensity of agriculture, and (3)

political centralization.

• Landcover: Since landcover might affect conflict risk and the extend of transport

infrastructure, we control for the percentage of ethnic groups’ settlement areas that

covered by (1) pasture land that is used for grazing, (2) savanna, (3) tropical wood-

lands, and (4) tropical forests (FAO 2015). With average values over 10 percent,

these are the most prevalent land-cover types in Africa.

• Characteristics of the area between an ethnic group and the capital: Lastly, the qual-

ity of the road connection between an ethnic group and the capital is likely correlated

with characteristics of the area between an ethnic group and the capital. Such char-

acteristics might also conflict risk. For this reason, we compute the geographical area

that lies between ethnic groups and their countries’ capitals, recompute all baseline

controls for these areas,10 and add these new variables as controls.

10I.e, these areas’ distance to the coast, their local climate (mean temperature, precipitation, evapo-
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The third row of Figure A7 shows that including these three vectors of control variables

does not affect the baseline results.

In addition to the effect of potential omitted variables, the results reported above

might be driven by non-linear effects of (1) pure geographic distances, in particular

state accessfootg and internal connectednessfootg , and/or (2) population counts. To control

for this caveat, we create yearly bins of ethnic groups that have similar values on these

three dimensions. Within each country-year, we divide each of the three variables into

bins of approximately 25 observations, which when all combined and interacted with make

a total of 10’279 unique bins populated by observed ethnic groups. We then add one fixed

effect per distance-population-country-year-bin to our baseline specification. Econometri-

cally, this method is akin to matching observations from the same country-year on these

three variables. The results of the re-estimated models are presented in the fourth row

of Figure A7. The coefficients for RSC are similar those at the baseline and statistically

significant. This further suggests that the negative effect of relational state capacity on

conflict risk is not due to country-specific, nonlinear effects of (the combination of) pure

geographic distances and population sizes.

Lastly, the fifth row of Figure A7 reports the results of estimating the main specifi-

cations without any control variables, except for foot-travel times to capitals and within

ethnic groups. The results are not driven by the inclusion of the various controls. If at

all, the specification shows that the inclusion of controls decreases the estimated effect of

RSC, in particular its effect on the number of battles between state forces and challengers,

which is now highly significant, both in the naive OLS and the IV-specification.

A4.5 Restricting the sample

Ethnologue lists (1) many very small ethnic groups, and (2) groups that are not strictly

nested in (changing) country-borders. The first caveat may lead to internal connected-

ness measures that are hardly influenced by any roads. The second caveat produces small

‘rump’ groups where ethnic settlement patterns are cut by country borders, leaving po-

tentially insignificant parts of an ethnic group on one side of a border. Such ethnic groups

might inherently feature different types of conflict risks (Michalopoulos and Papaioannou

2011) which might bias our results.

To address both caveats, we restrict the sample of ethnic groups in two ways. The first

is to drop ethnic groups with an area that is below the 25th percentile of the distribution

of ethnic groups’ areas (1295 km2). The second robustness check drops ethnic groups that

are divided by a state border. The results (Figure A7) of both tests are consistent with

our main results. All coefficients are statistically indistinguishable from the baseline.

transpiration, and the ratio of the latter two), and their average altitude and roughness. We also include

their contemporaneous (urban) population (both logged), as well as the logged size of their area.
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A4.6 Alternative units of analysis

Next, we reevaluate our hypotheses using two alternative data sets of ethnic settlement

patterns, namely GREG (Weidmann, Rød and Cederman 2010) and Murdock’s (Murdock

1959) ethnic map. GREG is based on the Soviet Atlas Narodov Mira, and Murdock’s

Atlas is coded on the basis of ethnographic evidence available in the 1950s and has been

digitized by Nunn and Wantchekon (2011). Ethnic groups encoded in both data sets are

on average bigger than those of the Ethnoglogue data. This might reduce potential bias

introduced by very small ethnic groups (see also above, Subsection A4.5). The ensuing

results, plotted in Figure A7, are mostly equivalent to the baseline results. As noted in

the main text, this is with the exception of the IV-estimate of the effect of RSC on the

number of state-challenger battles which does not decrease in magnitude but is estimated

to be insignificantly different from zero. The respective naive OLS estimate is statistically

significant at p < .1.

A4.7 Country-level jackknife

To assess the effect single countries have on our estimates, we implement a country-by-

country jackknife approach, where we iteratively delete observations from each country

from our sample. The estimates for the coefficient of relational state capacity RSC are

plotted in Figure A11. No single country affects the statistical significance of the effect of

RSC on the number of challengers and fighting between them. Not surprisingly however,

we do see lower associations of RSC with our conflict-related outcomes when we drop

countries such as the DR Congo, Ethiopia, Algeria, or Kenya. In particular the first

two countries host peripheral ethnic groups which are prime examples of relatively weak

relational state capacity leading to violent competition over local power. With regard

to the third main outcome, battles between state forces and armed groups, Figure A11

shows that the baseline estimate of the IV specification are mainly driven by patterns

of relational state capacity and conflict in the DR Congo. Although the country, in

particular its Eastern part, hosts many proto-typical ethnic groups with low levels of

relational state capacity and high levels of conflict, its influence on the results casts doubt

on its representatives of conflict dynamics elsewhere on the continent. We discuss the

implications of this finding in the main text.
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Figure A11: Country-by-country jackknife applied to main models (Table 2, main paper).
Bars indicate 95% confidence intervals.

A4.8 Cross-sectional analysis

To reflect border changes in Africa after 1997,11 we have so far analyzed panel data.

Because such border changes might bias our results, we turn towards a cross-sectional

analysis. The first cross-section is based on state borders and capitals observed in 1997

(the start of ACLED). The second cross-section chooses countries’ borders and capitals

locations at the time of their independence.12 The dependent variables consist of the logged

sums of our baseline outcomes between 1997 and 2016. Using the cross-sectional data, we

estimate our main models with country-fixed effects, and base data for the population

controls on the year 1966 (1990) for the first (second) cross-section.

The results of these analyses are presented in Figure A12. They show that the insights

gained from our baseline models hold irrespective of the choice of a panel- or cross-sectional

design. Only the IV-estimate of the effect of RSC on violence between the state and

challengers turns statistically insignificant, but is associated with the a point-estimate

11Mainly the secession of South Sudan in 2011, but, where the SCAD and UCDP GED data is used,

also the independence of Eritrea and Namibia.
12Dropping ethnic groups from Eritrea, South Sudan, and Namibia from the sample, and replacing

them with the groups we would have observed had these countries not become independent from Ethiopia,

Sudan, and South Africa.

A17



Figure A12: Coefficients of RSC in the cross-sectional analysis. Bars indicate 95% confi-
dence intervals.

that is indistinguishable from the one derived from the respective naive OLS-estimate.13 In

sum, these patterns suggest that it is unlikely that the main results are due to endogenous,

postcolonial changes of borders and capital locations.

A4.9 Alternative mechanisms

Our theoretical argument is that RSC affects conflict risk through social control. However,

our empirical measure of RSC, being based on travel times, might affect conflict risks

through different mechanisms. In the following, we test two such alternatives.

First, roads will increase market access and thus foster local development (e.g. Don-

aldson and Hornbeck 2016), which in turn increases the odds of peace. To control for this

alternative causal mechanism, we control for (1) ethnic groups’ nightlight emissions as a

proxy for local development (Henderson, Storeygard and Weil 2012),14 as well as (2) the

total, quality-weighted road mileage present in an ethnic groups settlement area in 1966.15

The latter controls for the historical level of economic development. After controlling for

the length of the local road network, the RSC-measure picks up effects only due to the

structure but not the local length of the road network. It therefore is a conservative test.

Second, ethnic groups that are well connected to the capital might also be well con-

nected to entirety of the country’s population. Such physical integration might promote

socio-economic integration and increased trans-ethnic interactions, both of which may fos-

ter peace. To avoid picking up effects that are due to the general level of connectedness

between an ethnic group and its country, we include a measure for the extent of ‘external

connectedness’ of an ethnic group.16

Using the additional covariates to control for these two alternative causal mechanisms,

13Note however, that the size of coefficients is smaller than at the baseline, once they are standardized

by the means of the dependent variables.
14We include the logged value of average nightlight emissions in a settlement area and a dummy for

whether any light is emitted in a certain group-year. Data on nightlights is available from 1992 to 2015

from National Geophysical Data Center (2014). We substitute the missing 2016 values for data from 2015.
15This measure is simply the sum of all road kilometers multiplied by the average speed attainable on

them.
16Specifically and similar to the computation of the measure internal.connectedness (Equation 2, main

text), we compute
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Table A4: Alternative Mechanisms, OLS: Alternative mechanisms

Dependent variable (logged)
Challengers Challenger Events State Events

(1) (2) (3)

RSC 1966 (log) −0.149∗∗∗ −0.115∗∗∗ −0.125∗∗∗

(0.032) (0.036) (0.033)

State access 1966; foot (log) 0.020 −0.012 −0.016
(0.027) (0.033) (0.028)

Internal connectedness 1966; foot (log) −0.112∗∗∗ −0.095∗∗∗ −0.100∗∗∗

(0.029) (0.032) (0.029)

External connectedness (log) 0.009 0.026 −0.011
(0.056) (0.061) (0.063)

External connectedness; foot (log) 0.065 0.048 0.121
(0.068) (0.079) (0.081)

Roads (km x quality) −0.002 −0.004∗∗ −0.002
(0.002) (0.002) (0.002)

Nightlights (log) 0.043∗∗∗ 0.047∗∗∗ 0.025∗∗∗

(0.006) (0.007) (0.006)

Nightlights >0 −0.176∗∗∗ −0.208∗∗∗ −0.087∗∗∗

(0.031) (0.040) (0.031)

Country-year FE: yes yes yes
Controls: yes yes yes
Mean DV 0.21 0.17 0.15
F-Stat: 24.1 21.42 16.49
Observations 31,740 31,740 31,740
Adjusted R2 0.408 0.379 0.316

Notes: OLS models. Control variables consist of the total and urban population (log), groups’
area (log), the mean annual temperature, precipitation, evaporation, the ratio of precipitation and
evaporation, the mean altitude and slope of a group’s settlement area, its cash crop and agricultural
suitability, a mineral deposit dummy, as well as groups’ logged distance to the closest coast, navigable
river, and border. Two-way clustered standard errors in parentheses (ethnic group and country-year
clusters). Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

we re-estimate the baseline models (Table A4).17 Of the additional variables, only our

proxy for local development is consistently associated with challengers to state power and

external.connectednessg =

 1

Ig ∗Kg
∗

Kg∑
k=0

Ig∑
i=0

timek,i

−1

,

where i ∈ Ig denotes the inhabitants of the settlement area of group g that live at a distance of

travel time timek,i from their compatriots k ∈ Kg that live in all other ethnic settlement areas. To

differentiate effects of pure geography from the effects of the road network, we again compute the measure

external connectednessfootg on the foot-path network and include it as a covariate.
17We do not implement this robustness check for the IV-analysis because the contemporary data (pop-

ulation and nightlights) would introduce post-treatment bias.
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conflict. In particular, local nightlight emissions have a negative association with conflict

at the extensive, and a positive one at the intensive margin. External connectedness has

no discernible effect on conflict patterns. Importantly however, the estimate of the effect

of relational state capacity remains almost unchanged from the baseline.

A5 Instrumental variable approach: Simulating road net-

works

To simulate realistic, yet simplified road networks, we assume that the road-builder aims

to minimize the following objective function:

LOSS =
1

I2
∗

I∑
j=0

I∑
i=0

timej,i, (1)

where i, j ∈ I are the inhabitants of the territory on which roads are built. They are

separated by a distance of travel time timei,j . The road builder seeks to minimize the

average travel time between any two inhabitants of the territory.18

To build an instrument as clean as possible, we would need data on population distri-

butions that are unaffected by modern transport infrastructure. Unfortunately, the first

comprehensive censuses on the continent were taken during colonial rule, after the in-

troduction of roads and railroads. Furthermore, more spatially disaggregated population

data only exists for the very contemporary period since 1990. Confronting this dearth of

spatially disaggregated population data needed to simulate the structure of road networks,

we turn to estimates of the African population distribution in 1880 from the HYDE 3.1

data (Klein Goldewijk, Beusen and Janssen 2010). This estimate is based on ingredients

at varying levels of analysis: broad, macro level population estimates of the evolution of

the African population and urbanization rates by (backprojected) country (e.g., Maddison

2001), subnational census data with temporal coverage varying by country, and geographic

data on soil productivity, distance to water, and the landcover and population distribution

in the year 2000. Described in more detail in Klein Goldewijk, Beusen and Janssen (2010),

the estimation procedure leverages and combines these data into historical population es-

timate at a resolution of .0833 decimal degrees (ca. 10km). We aggregate these data for

most countries in our sample (see Table A5). While constituting the most comprehensive

and detailed population data for our purpose, the use of contemporary data (partly sub-

national census data, contemporary geographic land cover and population estimates) can

bias our results. We discuss such biases and our respective empirical strategy in the main

text.

18Note that Burgess et al. (2015) add a distance penalty to each pair of citizens to the loss function for

their simulation of ‘optimal’ road investment. In our IV-setup, this approach would introduce an additional

parameter (distance) and further complicate the control for omitted variables.
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Road building is constrained by the road budget:

Bq =

Q∑
k=q

lengthobservedk , (2)

which consists of different qualities q ∈ Q of roads, each of which corresponds to the

observed Michelin road types (see A2). For each road type, the road-builder receives the

road mileage of this type of road and all superior types of roads observed in the Michelin

map of 1966.

Roads are ‘built’ on a pre-determined network of footpaths.19 Given computational

constraints in the repeated computation of the loss function (Eq. 1), we adjust the resolu-

tion of our baseline network to countries’ size (see Table A5). As detailed by the following

description of our road-building algorithm, the road-builder builds one type of road after

the other, by upgrading existing roads sequentially. The budget constraint ensures that

the total road mileage per type of road on the simulated network corresponds to the one

in the observed network.

Table A5: Mean of input values to road network simulation

Resolution Countries Example Population Vertices B1 B2 B3 B4 B5

0.083 11 Togo 352, 680.9 450 1.5 1.5 1.0 0.8 0.2
0.167 33 Nigeria 3, 306, 608.0 1, 547.2 11.6 11.6 8.2 7.4 2.9
0.25 22 DR Congo 3, 827, 680.0 1, 984.9 21.5 21.5 15.9 14.6 7.7

Networks’ resolution is measured in decimal degrees and road budgets Bq in 1000 kilometers.

Algorithm:

1. Round; q = 1

(a) Draw 10 seed edges, upgrade to q

(b) Select neighboring edges qe < q of all edges with quality qe = q, evaluate and

keep 10 most promising edges as Ep.

(c) Upgrade edge e ∈ Ep that minimizes LOSS. Select neighboring edges qe < q

of e and add to Ep. Update Bq = Bq − lengthe.

(d) Repeat step (c), and, in every 10th round, step (b), until budget Bq is spent.

2.-5. Round; q ∈ [2, 3, 4, 5]

(a) Select all edges with quality qe = q − 1, evaluate and keep 10 most promising

edges as Ep.

19These footpath-networks are of the same kind as the one used to transport the Michelin maps into

networks. In particular, the networks consist of (1) vertices distributed in a grid-like manner in space, and

(2) 8-connected ‘foot-path’-edges.
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(a) q = 1 (b) q = 2 (c) q = 3 (d) q = 4 (e) q = 5

Figure A13: Simulation of the Ugandan road network in 1966, using population data from
1880.

(b) Upgrade edge e ∈ Ep that minimizes LOSS. Select neighboring edges qe = q−1

of e and add to Ep.

(c) Repeat step (b), and, in every 10th round, step (a), until budget Bq is spent.

(d) Proceed to the next higher road quality and start again at (a).

The algorithm generates realistic road networks (Figure A13 and A14) for all country-

periods in Africa since independence. To speed up computation, we make use of a 90

CPU high performance computing cluster. While small countries can be simulated in

minutes, bigger countries require up to 48 hours of run time, simply because each time we

recalculate the loss value we have to compute up to 34152 shortest paths.20

Over subsequent iterations of edge-by-edge road building, the within-country connect-

edness increases and the LOSS improves (Figure A15a), but with decreasing marginal

returns due to substantive scale effects of roads. Figure A15b compares the LOSS values

achieved by the simulated networks and observed networks. The simulated networks are

consistently better in connecting countries’ populations.

A6 Instrumental variable approach: Additional robustness

checks

In addition to the sensitivity analyses presented above, this section discusses robustness

checks tailored specifically to the IV-approach.

A6.1 First stage by size of country and ethnic group

Because we vary the resolution of the road simulations depending on countries’ size (see

Table A5), our first stage results are driven by intermediate and large countries. In con-

trast, small countries do not feature enough variation in our instruments. Splitting up

the sample along the three levels of resolution used for simulating road networks and esti-

mating the first stage separately illustrates this pattern (Table A6). Our two instruments

possess no significant explanatory power in the 11 very small countries (think of Burundi

20We make use of a path updating algorithm with O(|V 2|) efficiency.
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(a) Mali: Observed and... (b) ... simulated network

(c) Senegal: Observed and... (d) ... simulated network

(e) Zambia: Observed and... (f) ... simulated network

Figure A14: Observed and simulated road networks in Mali, Senegal, and Zambia, 1966.
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(a) Improvement of loss during application of road-building
algorithm

(b) Comparison of loss on ob-
served and optimized networks
(both with population data for
1960).

Figure A15

Table A6: First stage estimation across resolutions of optimized networks

Dependent variable: RSC 1990 (log)

(1) (2) (3)

State access 1880 (sim; log) −0.039 0.479∗∗∗ 0.914∗∗∗

(0.365) (0.070) (0.109)

Internal connectedness 1880 (sim; log) −0.241 −0.276∗∗∗ −0.258∗∗∗

(0.179) (0.040) (0.047)

Resolution (dec. degrees): 0.083 0.167 0.25
Country-year FE: yes yes yes
Controls: yes yes yes
Mean DV -0.68 -1 -1.38
F-Stat: 84.23 329.3 375.02
Observations 1,740 19,045 10,495
Adjusted R2 0.919 0.897 0.902

Notes: OLS models. Control variables consist of the total and urban population (log), groups’
area (log), the mean annual temperature, precipitation, evaporation, the ratio of precipitation and
evaporation, the mean altitude and slope of a group’s settlement area, its cash crop and agricultural
suitability, a mineral deposit dummy, as well as groups’ logged distance to the closest coast, navigable
river, and border. Two-way clustered standard errors in parentheses (ethnic group and country-year
clusters). Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A7: First stage estimation across geographic size of ethnic groups

Dependent variable: RSC 1990 (log)

(1) (2) (3) (4)

State access 1880 (sim; log) 0.539∗∗∗ 0.530∗∗∗ 0.771∗∗∗ 0.925∗∗∗

(0.107) (0.097) (0.116) (0.121)

Internal connectedness 1880 (sim; log) 0.019 −0.186∗∗∗ −0.463∗∗∗ −0.367∗∗∗

(0.072) (0.051) (0.066) (0.074)

Group area quartile: 1 2 3 4
Country-year FE: yes yes yes yes
Controls: yes yes yes yes
Mean DV -1.58 -1.29 -0.98 -0.59
F-Stat: 48.82 79.05 98.48 95.11
Observations 7,485 7,910 7,950 7,935
Adjusted R2 0.814 0.885 0.901 0.916

Notes: OLS models. Control variables consist of the total and urban population (log), groups’
area (log), the mean annual temperature, precipitation, evaporation, the ratio of precipitation and
evaporation, the mean altitude and slope of a group’s settlement area, its cash crop and agricultural
suitability, a mineral deposit dummy, as well as groups’ logged distance to the closest coast, navigable
river, and border. Two-way clustered standard errors in parentheses (ethnic group and country-year
clusters). Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

or Lesotho) in our sample. However, in the remaining bulk of countries, our instruments

behave as expected.

In a similar vein, it might be argued that only very large ethnic groups drive the first

stage. We therefore split the sample along the quartiles of the total geographic area of

ethnic groups and re-estimate the first stage regression. Table A7 shows that the first

stage results are not driven only by large ethnic groups. Indeed, although the coefficient

size of our first instrument, state accesssim increases with group size, its precision does

not. For the smallest quartile of ethnic groups, where we expect least variation in the

internal connectedness, our second instrument, internal connectednesssim does not have

explanatory leverage over RSC. However, it does have such power for the three remaining

quartiles. These results show that our first stage estimation is not driven by the biggest

ethnic groups although, as one would expect, the first stage is strongest there.

A finial finding worth discussing is that across country and group sizes, the coefficient

for the state access instrument is larger than that of the internal connectedness instrument.

This difference is due to the manner in which we construct our road graph, in which the

observed road networks are superimposed on the 8-connected ‘foot-path’ network. This

superposition implies that to travel on the road network, each traveler has to first ‘walk’

the next road network vertex. This walk inflates within-group travel times proportionally

more than travel towards capitals. Because this extra ‘walk’ is not necessary on the

simulated networks, the coefficient for the internal connectedness instrument is pushed

towards zero.
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A6.2 Assessing bias from contemporary census data in HYDE

As discussed in the main text, one important caveat of the HYDE population data used

for simulating road networks is that it is projected back on the basis of (post)colonial

census data. The subnational census counts used in the HYDE projections comprise all

the data for all censuses available to Klein Goldewijk, Beusen and Janssen (2010). These

were mostly retrieved from the PopulStat database (Lahmeyer 2004).21 The temporal

coverage of the subnational census data used by Klein Goldewijk, Beusen and Janssen

(2010) varies for each country, ranging from, for example, the mid 19th century for South

Africa, to 1921 for Tanzania, 1956 for Sierra Leone, 1971 for Botswana and as late as 1996

for Burkina Faso.22 For slightly less than half of our sample (42%), the HYDE estimates

are based on subnational population data collected before 1960, before we observe the first

Michelin Map.

Absent any precolonial population data on the African continent to compare our re-

sults against, one strategy to judge whether the use of the backprojected data introduces

bias into the analysis follows the assumption that the HYDE data that is based on earlier

subnational census counts is less biased that the data that is only based on contemporane-

ous counts. Making this assumption, we can compare results from cases with and without

data available for early years with our baseline estimate. Figure A16 plots the results of

this exercise, splitting our sample into cases with and without subnational census data

from before 1960 (the median value) used by HYDE. The results are remarkable similar

across the two subsamples, with the “early” sample exhibiting, if at all, stronger results.

This is evidence against the suspicion that our results are caused by bias produced by

HYDE reliance on contemporary census data.

A6.3 IV results by resolution of simulated rod networks

A second test of reverse causality introduced be the HDY population estimates gauges the

extent of bias arising from the geographic data on population counts and landcover from

the year 2000 that are “baked” into the HYDE data. The HYDE estimation process uses

these data along with the other geographic data on land productivity and distance to water

bodies to derive the fine-grained spatial distribution of higher-level population estimates

derived from the subnational census data. Because the HYDE data may thereby pick up

information on (contemporary) road networks and other post-treatment outcomes, our

road network simulation may be biased. These effects are likely quite localized and nested

within administrative regions, because the overall HYDE population count of regions

depends on the (extrapolated) census data discussed above. The related reverse causality

21Note that this database is no longer openly available, but can be accessed through the internet archive:

http://web.archive.org/web/20170712102100/http://www.populstat.info/.
22These years are listed in Appendix A of Klein Goldewijk et al. (2017) who update HYDE to version

3.2, using the same PopulStat data. Because this update post-dates the simulation of road networks, we

have used HYDE version 3.1. Deviations of the cited years from the earliest PopulStat data are explained

by divergent administrative unit boundaries that cannot be harmonized over time.
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Figure A16: Distinguishing cases with and without early population data used by
Klein Goldewijk, Beusen and Janssen (2010) to estimate the HYDE data.

Figure A17: IV results by resolution of network used for simualting road networks.

bias should therefore disappear as we aggregate the HYDE population data to coarser

raster data, thereby dissipating spatial detail. While the original HYDE data comes as

a raster with a 10km resolution, we simulated roads on networks with a 20 and 30km

resolution for larger countries (see Table A5 above) to avoid simulation costs that rise

exponentially with networks’ size. We use this variation between countries to examine

whether our results are driven by road simulations based on the most detailed population

data. These are the cases where we would expect most bias.

To do so, we split the sample into the three levels of spatial resolution used to simulate

road networks. The results in Figure A17 show that the results in the sample with the

coarsest network resolution (30km, 22 countries) almost exactly reflects the baseline results

for the first two outcomes and exhibits stronger patterns for the number of violent events

between challengers and state forces. The results for the sample with networks simulated

at a resolution of 20km (33 countries) are similar for the first two outcomes and null for

the last outcome. The sample of a very detailed resolution comprises only cases from

11 relatively small countries. Notably, the first stage within this sample amount to only

2.7, statistically well below the threshold value of at least 7 (Table A6, page A24). This

explains the noisy and relatively large estimates in Figure A17. Note however, that these
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estimates are not significantly different from the baseline results or those among the sets

of observations with road networks simulated at a coarser resolution. We interpret the

finding that the results are similar among observations for which we simulate road networks

at different spatial resolutions as suggestive evidence that potential reverse causality bias

introduced through HYDE’s reliance on spatial data from 2000 does not cause the patterns

we observe in the data.

A6.4 Disaggregated relational state capacity

To test whether it is indeed the combination of ethnic groups’ internal connectedness and

state access, coined RSC, that drives the results, we conduct a robustness check where we

instrument for both constituents of RSC separately. Table A8 shows that both instruments

are valid for the respective endogenous variable. The instrumented measures of state

access and internal connectedness are consistently related to the number of challengers

and violence among them. In these two models, we can also not reject the null that the

coefficients of state access and internal connectedness are of equal absolute size. This

supports the use of our aggregated measure of RSC. Mirroring the results of the reduced

form estimates reported in the main text in Table 3, the results show that the number of

battles between state forces and armed group decreases with state access to ethnic groups

(p = .057), but does not increase with their internal connectedness. The coefficient of

internal connectedness is half the size of that of state access, and associated with a large

standard error. Please refer to the main text for further discussion of the implications of

this pattern.
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Table A8: Effect of the components of RSC, 2SLS

Dependent variable (logged)
Stage 1 Stage 2

State Internal Challengers Challenger State
access connectedness events

(1) (2) (3) (4) (5)

State access 1880 (sim; log) 0.665∗∗∗ 0.020
(0.051) (0.060)

Int. connect. 1880 (sim; log) −0.077∗∗∗ 0.185∗∗∗

(0.024) (0.033)

β3: State access 1990; (log) −0.348∗∗∗ −0.246∗∗∗ −0.137∗

(0.084) (0.088) (0.072)

β4: Int. connect. 1990; (log) 0.517∗∗∗ 0.428∗∗∗ 0.065
(0.154) (0.159) (0.143)

State access 1880; foot (log) 0.273∗∗∗ 0.012 0.151∗∗∗ 0.074 0.007
(0.032) (0.038) (0.056) (0.061) (0.050)

Int. connect. 1880; foot (log) 0.053∗∗∗ 0.262∗∗∗ −0.171∗∗∗ −0.132∗∗ −0.012
(0.017) (0.031) (0.064) (0.066) (0.058)

β3 + β4 0.17 0.18 -0.07
(0.16) (0.16) (0.14)

Country-year FE: yes yes yes yes yes
Controls: yes yes yes yes yes
Mean DV -2.6 -1.49 0.21 0.17 0.15
F-Stat: 445.97 120.14 20.56 19 15.46
F-Stat Stage 1 (state): 185.93 185.93 185.93
F-Stat Stage 1 (internal): 39.81 39.81 39.81
Observations 31,280 31,280 31,280 31,280 31,280
Adjusted R2 0.932 0.786 0.352 0.343 0.307

Notes: 2SLS-IV models. Control variables consist of the total population in 1880 (log), groups’ area
(log), the mean annual temperature, precipitation, evaporation, the ratio of precipitation and evap-
oration, and the mean altitude and slope of a group’s settlement area, its cash crop and agricultural
suitability, a mineral deposit dummy, as well as groups’ logged distance to the closest coast, navigable
river, and border. Two-way clustered standard errors in parentheses (ethnic group and country-year
clusters). Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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