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Abstract

Borders define states, yet little systematic evidence explains how and where
they are drawn. Putting recent challenges to state borders into perspective, this
paper analyzes how ethnic geography and nationalism have shaped European
borders since the 19th century. We argue that nationalism creates pressures
to redraw political borders along ethnic lines, ultimately making states more
congruent with ethnic groups. We test this argument with a newly developed
Probabilistic Spatial Partition Model that models state territories as partitions
of a planar spatial graph. Introducing new data on Europe’s ethnic geography
since 1855, we consistently find that ethnic boundaries between two locations
strongly increase the probability that they are, or will become, separated by a
state border. Secession is an important mechanism driving this result. Similar
dynamics characterize border change in Asia but not in Africa and the Ameri-
cas. Our results highlight the endogenous formation of nation-states in Europe
and beyond.

Keywords: State formation; borders; ethnicity; nationalism; Europe

We thank Nils-Christian Bormann, Michael Kenwick, Melissa Lee, Kan Li, Paul Poast, seminar
and conference participants at APSA 2020, the University of Oxford, Harvard University, and the
Perry World House Borders and Boundaries Conference, as well as members of the International
Conflict Research group for their helpful feedback and Nicole Arnet, Camiel Boukhaf, Nicole Eggen-
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Introduction

Borders are constitutive features of the modern state system that define the size and

shape of states and specify the limits of their sovereignty. While a growing litera-

ture has focused on the political implications of borders (e.g., Abramson and Carter

2016; Carter and Goemans 2011; Simmons 2005; Michalopoulos and Papaioannou

2016), their origins remain understudied. Instead, most quantitative research treats

borders as exogenous and sidesteps the process of their formation. This question,

however, has gained relevance as existing borders have come under pressure and

risk being replaced by new ones. Not only Russia’s annexation of Crimea in 2014

has signaled a revival of revisionism. Majorities in Hungary, Greece, Bulgaria and

Turkey still view parts of neighboring countries as rightfully theirs (Fagan and

Poushter 2020), the Catalan impasse persists, and Brexit has fueled Scottish seces-

sionism and renewed conflict in Northern Ireland.

Despite its theoretical and political importance, we lack systematic evidence on

the drivers of border formation. In this paper, we examine the role of ethnic geog-

raphy in shaping state boundaries, focusing on Europe since the late 19th century.

We argue that the historical rise of nationalism created a demand for ethnically

homogeneous nation-states and prompted efforts to redraw borders along ethnic

lines. Nationalism mostly motivated secessionism in multi-ethnic states, but oc-

casionally also powered unification and irredentism. As a result, borders became

increasingly aligned with the underlying ethnic map. Although previous accounts

support these claims (Beissinger 2002; Hechter 2000; Weiner 1971), the relationship

between ethnicity and state borders remains contested with some arguing for the

primacy of state-led efforts of creating ethnic nations (Hobsbawm 1990). Absent

systematic evidence, it remains unclear whether, how, and by how much ethnic

geography has shaped today’s state borders.

Addressing this question requires solving three empirical challenges: The first

concerns the right unit of analysis. Previous analyses have focused exclusively

on existing borders (Carter and Goemans 2011) or used grid cells to study border

formation (Kitamura and Lagerlöf 2020). Such approaches fail to account for coun-

terfactual outcomes and ignore spatial dependencies that characterize borders. Sec-
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ond, estimating the effect of ethnic geography on state borders requires considering

geographic features that affect both. Third and lastly, we require data on ethnic ge-

ography that predate state borders and their changes as to avoid reverse causality

from state-led ethnic assimilation and cleansing.

To address these issues, we develop a new Probabilistic Spatial Partition Model

(PSPM) that allows us to estimate the effect of ethnic settlement patterns and other

geographic features on the partitioning of Europe’s landmass into states since 1886.

By treating geographic space as a planar network of points that is partitioned into

state territories, our model accounts for spatial dependencies and estimates effects

conditional on covariates. Importantly and beyond its current application, the

PSPM can be used to model any type of spatial partitioning, such as administra-

tive units or electoral districts.1

Our analysis pairs the PSPM with new time-varying spatial data on ethnic set-

tlement areas in Europe since 1855 digitized from 73 historical ethnographic maps.

Combined with strategies that mitigate their potential political biases, these allow

us to study borders and border changes based on pre-existing ethnic settlement ar-

eas, which prevents reverse causality. To minimize omitted variable bias, we pair a

static baseline with a lagged dependent variable model of the effect of ethnic geog-

raphy on border change.

We find that the presence of an ethnic boundary between two locations substan-

tially increases the probability that they are or will become separated by an inter-

national border by 35 and 17 percentage points, respectively. This finding is robust

to accounting for potentially endogenous changes in ethnic geography, additional

controls, and changing the spatio-temporal data structure. Additional analyses of

post-World War II ethno-nationalist secession suggest it to be a key driver of the

realignment of state borders: Areas home to peripheral ethnic groups have a 6

to 50 times greater risk of experiencing secessionist claims, civil wars, and border

change. We finally explore whether our findings generalize beyond the European

context. Although we find a static correlation between ethnicity and borders on all

continents, ethnic boundaries explain border change only in Europe and Asia. Post-

colonial Africa and the Americas have thus far avoided extensive ethno-nationalist

1The PSPM will be distributed as an R package released upon publication.
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border change.

The origins of international borders

The partitioning of geographic space into states is one of the most consequential

political processes that shapes national and international politics. It determines

the number, size, and shape of states, as well as internal attributes such as their

geography, demography, and economy. Understanding border formation can fur-

thermore yield insights where new borders may emerge, and which borders may

become unstable. However, systematic empirical evidence on arguments how and

where borders are drawn is scarce (but see Carter and Goemans 2011; Kitamura and

Lagerlöf 2020).2 Below, we briefly outline realist and institutionalist arguments, be-

fore discussing a complementary perspective on ethnicity and nationalist border

change. We then turn to the main empirical problems of assessing the origins of

borders.

The realist perspective commonly starts from the assumption that power-max-

imizing states compete over territory and resources (e.g., Morgenthau 1985; Tilly

1990). In the struggle of all against all, borders emerge along natural obstacles such

as mountains and waterbodies or man-made barriers that allow states to project

power internally while keeping invaders at bay (Morgenthau 1985; Kitamura and

Lagerlöf 2020). Some borders may also reflect geopolitical concerns over the bal-

ance of power (Møller 2014).

A second theoretical view holds that borders are institutions that help coor-

dinate peaceful interstate relations. Correspondingly, they result from a “mixed-

motive” game in which states compete over territory, but also desire border stabil-

ity (Simmons 2005). To simplify bargaining and increase stability, states settle on

borders that follow geographic features, cartographic lines, or historical precedents

(Carter and Goemans 2011). The general expectation is that such borders help mit-

igate future conflict (Goemans and Schultz 2017; Abramson and Carter 2016).

A third, complimentary perspective highlights ethnic geography and national-

2This stands in contrast to evidence on the impact of borders on, for example, conflict (Abramson
and Carter 2016; Carter and Goemans 2011; Michalopoulos and Papaioannou 2016), trade (Simmons
2005; Carter and Goemans 2018), and development (Alesina, Easterly and Matuszeski 2011).
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ism as a main driver of border formation. Adopting a cultural and mostly indi-

vidualist perspective, Alesina and Spolaore (1997, 2005) explain the size and shape

of states based on a trade-off between economies of scale and and costs of ethnic

heterogeneity in large states (Friedman 1977; Desmet et al. 2011). In turn, macro-

sociological theories explain the origins of state borders in nationalism, defined by

(Gellner 1983, p. 1) as “a political principle which holds that the political and na-

tional unit should be congruent.” They hold that violations of the nationalist ideal

caused by a mismatch between states and nations generate collective grievances

and popular pressures to redraw the map. These frequently result in attempts to

establish new borders along ethnic lines, either by secession, unification, or irre-

dentism (Weiner 1971; Hechter 2000; O’Leary 2001).

Because there are more potential ethnic nations then states (Gellner 1983), se-

cessionist conflict is the most frequent type of conflict emerging from structural

state-nation incongruence Hechter (2000). The phenomenon has been extensively

analyzed, partly because it is prone to violence, which is often fueled by ethnic in-

equality (Cederman, Gleditsch and Buhaug 2013). Historically, secessionist nation-

alism has contributed to the collapse of multi-ethnic empires (Hiers and Wimmer

2013; Beissinger 2002; Roshwald 2001) and continues to threaten multi-ethnic states

(Germann and Sambanis 2020). In contrast, research on rarer processes of unifica-

tion and irredentism is more limited (Breuilly and Speirs 2005). In one of the few

systematic studies of national unification, Griffiths (2010) finds that it requires lin-

guistic homogeneity. Studying irredentist conflict on the Balkans before World War

I, Weiner (1971) argues that intra- and interstate dynamics can escalate nationalist

claims over territory and fuel conflict. More recently, Siroky and Hale (2017) show

that irredentism can be fueled by political grievances of minorities with an ethnic

kin state abroad.

While a substantive literature documents secessionist, unifying, and irredentist

nationalism and conflict, the claim that ethnic groups shape states remains con-

tested. In fact, Hobsbawm’s (1990, p. 10) claims that “[n]ations do not make states

and nationalisms but the other way around.” This argument coincides with many

studies that show how states form nations and ethnic groups (Weber 1976; White

2004; Darden 2013; McNamee and Zhang 2019). While we do not dispute this evi-
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dence, we argue that a one-sided focus on identity formation captures only half the

impact of nationalism.

Despite the importance and prominence of this debate for understanding the

origins of (nation-)states, the border-transforming effects of nationalism and ethnic

geography have not been systematically assessed by the literature. We identify

three challenges in addressing this gap.

The first challenge consists in modeling borders and their partitioning of space.

Previous studies have been either limited to existing borders (Carter and Goemans

2011) or have examined border formation at the level of grid cells (Kitamura and

Lagerlöf 2020). Restricting the analysis to existing borders ignores the infinite set of

counterfactual borders that could have been drawn, which makes it difficult to ex-

plain border formation. Cell-based approaches, in turn, disregard non-monotonous

spatial dependencies inherent to borders, which partition space into contiguous

territorial units. To address these problems, we introduce a novel spatial partition

model that accounts for counterfactual borders and spatial dependencies.

A second challenge in existing theoretical and empirical accounts consists of

alternative explanations and potential omitted variables. To examine the implica-

tions of ethno-nationalism without bias, one needs to account for geographic fea-

tures that may have shaped both state borders and ethnic geography. Our empiri-

cal approach allows us to do so by including these variables as controls, similar to

standard regression models.

The third challenge relates directly to the objection that states made ethnic na-

tions but not the other way around. So far, the lack of historical data on ethnic

geography has made it impossible to untangle the reciprocal relationship between

ethnicity and state borders. We here introduce data on ethnic settlement areas since

1855 and examine their impact on changes in international borders. Because our eth-

nic data temporally precedes the border change it explains, we can rule out reverse

causality.
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Nationalism and the shaping of states

Our core argument holds that the rise of nationalism created a growing demand for

ethnically homogeneous nation-states, which caused an increasing realignment of

Europe’s borders with the underlying ethnic map. This development is one part of

a larger process that O’Leary (2001) labels the “right-peopling” and “right-sizing”

of states. While the former refers to state-led assimilation and extreme outcomes

such as population transfers or genocide, our focus here is on the latter.3

Historians have extensively documented both mechanisms across three distinct

phases in European history (Schieder 1964; Alter 1989). In the first phase around

the French Revolution, nationalism spread to West-European states and triggered

policies to assimilate peripheral ethnic groups into national identities (e.g., Weber

1976). The second phase spread nationalism through the Napoleonic wars and

the reaction of German and Italian nationalists, which ultimately led to the “right-

sizing” of their states through national unification. In the third phase, moderniza-

tion processes carried nationalism into Eastern Europe, in parallel to an increasing

influence of German and Italian intellectuals such as Herder and Mazzini (Gellner

1983).

How did nationalism transform Europe’s borders? To answer this question,

we start by considering the link between ethnic and national identities. Following

Weber (1978, pp. 385-98), we define ethnic groups as “those human groups that

entertain a subjective belief in common descent,” with language and religion being

the most frequent markers used to distinguish ethnic groups. Once such groups

express a desire to control a state, they become ethnic nations. Again following

Weber, a nation is “a community of sentiment which would adequately manifest

itself in a state of its own” and hence “tends to produce a state of its own” (p. 176).

While nations do not have to be ethnic, as illustrated by the civic nationalism of

Switzerland, most of them are.

Gellner’s congruence principle fully outlines the geopolitical consequences of

ethnic nationalism, as it requires “that ethnic boundaries should not cut across

political ones, and, in particular, that ethnic boundaries within a given state [...]
3The two processes may be interlinked as ethnic homogenization often focuses on territorially

contested areas (Bulutgil 2015, 2016; McNamee and Zhang 2019).
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should not separate the power-holders from the rest” (Gellner 1983, p. 1). In the

latter case,4 “alien rule” deprives ethnic groups of self-determination and state ser-

vices often provided in favor of the ruling group (De Luca et al. 2018). In response,

stateless nations may try to attain statehood by seceding from their multinational

state. The break-up of European land-based and overseas empires represents the

most important example of this process (Kumar 2017; Beissinger 2002).

Ethno-nationalist grievances can also emerge if an ethnic group is divided by

state borders. In this situation, nationalist activists may call for unification of their

kin in a common state. The promise of benefits from governance over a larger,

yet ethnically homogeneous population can help their cause (Alesina and Spo-

laore 2005). Their efforts can result in either peaceful or violent mergers of co-

ethnic units, as illustrated by 19th-century Germany and Italy and the more recent

(re)unifications of Vietnam, Yemen, and Germany. While usually less contentious

than secession, unification may trigger resistance from status-quo-oriented leaders

of smaller units, or power competition in the unified nation. Concomitant to the de-

cline of state death since 1945 (Fazal 2004, 2007), ethnic unification is exceedingly

rare.

Lastly, mixed incongruence exists where an ethnic group dominates one state

but forms a minority in another. This configuration creates a pressure for the

homeland to “liberate” the group in question, resulting in irredentist nationalism

(Weiner 1971). Originally named after Italian Veneto and Trento that remained

“unredeemed” after the first wave of Italian unification, the stronger territorial

integrity norm has reduced irredentist border change after World War II (Zacher

2001). Russia’s annexation of Crimea in 2014, however, illustrates that irredentism

has not disappeared.

Whether striving for secession, unification, or irredentist border change, na-

tionalist ideology equips political activists with powerful normative arguments to

justify their claims over seemingly ‘indivisible’ territory and mobilize elites and cit-

izens for their revisionist projects (Hroch 1985; Goddard 2006). While actual border

change is difficult to achieve due to collective action problems (Hardin 1995) and

resistance by the incumbent state, nationalist grievances can lower the bar by mak-

4Also called “state-to-nation deficit” by Miller (2007).
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ing activists less risk averse (Petersen 2002; Nugent 2020; Germann and Sambanis

2020). Still, revisionist nationalism is unlikely to succeed without considerable ma-

terial and organizational resources (Tilly 1978). Alternatively, geopolitical and eco-

nomic crises create opportunities for change by weakening existing states (Abram-

son and Carter 2020; Skocpol 1979), as illustrated by the collapse of the European

empires after the two world wars (Roshwald 2001). In addition, nationalist ‘suc-

cesses’ can inspire nationalists elsewhere, further reinforcing the spatio-temporal

clustering of border change. Such diffusion of ideas was well advanced in 19th cen-

tury Europe and spread globally thanks to the “Wilsonian moment” after World

War I (Manela 2007).

In sum, we argue that ethnic nationalism often results in secession and, though

less frequent and influential, irredentism and national unification. Over time, the

resulting border changes align the shape of states with ethnic settlement patterns.

We therefore expect that

Hypothesis 1 Ethnic settlement patterns shape state territories such that ethnic bound-

aries and state borders are congruent.

Beyond this static effect, our discussion has highlighted the impact of ethnic ge-

ography on border change. Because there have been many more ethnic groups that

may strive for nationhood than there have been states since the late 19th century,5

we expect secession to be the most important type of border change in this process

(Gellner 1983; Griffiths 2016; Hechter 2000). We therefore hypothesize that

Hypothesis 2 Misalignment between state borders and ethnic settlement patterns causes

changes in the shape of state territories such that ethnic boundaries and state borders become

increasingly congruent.

Data

We test our argument about the effect of ethnic boundaries on state borders using

historical, time-variant data on state borders and ethnic geography in Europe since

5Even more so after the German and Italian unifications which fall outside our present empirical
scope.
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1886. As explained in the following, we encode these data along with a set of

covariates on a spatial network of points that cover the European landmass. We

use the resulting network data to test our hypotheses with the newly developed

Probabilistic Spatial Partition Model (PSPM), which we introduce in the subsequent

section.

Geographic space as a network of points

The construction of our dataset starts from a simplified understanding of space as

a planar network G of N points. Discretizing space makes tractable the problem of

analyzing the partitioning of a continuous surface, which otherwise has infinitely

many possible outcomes. Taking a network of points instead of grid cells guaran-

tees that our units of analysis have unambiguous outcomes. While points can only

be in one state at any time, grid cells or other polygons are likely to straddle state

borders. In our main analysis, we divide the European landmass6 into a hexago-

nal lattice with 1096 nodes and 2905 edges. As shown in Figure 1a, each node j is

connected to its up to 6 first-degree neighbours k at a distance of ∼100km.7

Data on state borders

Our main outcome is the map of states at a given time, or, applied to our network,

the partitioning Pt of the latticeGt into states in year t. We measure Pt by retrieving

the state each vertex belongs to between 1886 and 2019 from the CShapes 2.0 dataset

(Schvitz et al. 2021). We limit ourselves to analyzing borders in every 25th year, i.e.,

in 1886, 1911, 1936, 1961, 1986, and 2011.8 The quarter-century intervals are long

enough for cumulative border change to produce meaningful variation yet short

enough to capture varying patterns of border change since 1886.

Figure 1b plots the resulting outcome data for the year 1886. While the colored

partitions on the map carry substantive meaning in that we can distinguish “Spain”

6We define ‘Europe’ in physical geographic terms, its eastern border being the Bosporus, the
Black Sea, the Carpathian mountain ridge, the Caspian Sea, and the Ural. This avoids bias from a
definition based on existing states.

7The hexagonal structure and its creation in an equal-area Albers projection minimizes geo-
graphic distortions. Appendix D analyzes variations in the exact location, resolution, and structure
of the network.

8Appendix D analyzes alternative temporal structures.
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(a) Baseline lattice

(b) Partitioning into states in 1886. Border-crossing edges in black.

(c) Ethnic boundaries in 1836-1885. Color denotes fraction of maps in which an edge
crosses an ethnic boundary.

Figure 1: Europe as a hexagonal spatial lattice
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from “France,” these partition labels are, for the purpose of this study, completely

interchangeable. Because we do not ex ante know the number or names of states,

we are not interested in whether certain vertices become part of a state named

‘France.’ Rather, the outcome of interest is whether certain vertices belong to a con-

tiguous state territory – a partition. The set of all partitions defines the partitioning

of Europe into states.

Data on historical ethnic settlement patterns

We collect new data on ethnic settlement areas in Europe since 1855. Our main

independent variable is defined at the level of each edge and measures whether

its vertices j and k are located in the same ethnic group or not. We construct this

measure from 73 historical maps that capture changes in ethnic settlement patterns

over the past 165 years. Some of these changes are well known and documented –

in particular genocides and population exchanges9 – while assimilation has altered

the ethnic map more gradually. Accounting for these dynamics, our time series of

ethnic maps avoids reverse causality that arises when contemporary data on ethnic

geography are projected into the past.

Ethnic maps first emerged in the middle of the 19th century and became increas-

ingly widespread across Europe ever since. Their proliferation was driven by two

major developments: First, innovations in statistics and cartography made it pos-

sible to categorize populations based on language and religion, and to represent

their settlement areas on increasingly precise maps. Second, the rise of nationalism

and pursuit of self-determination created a demand for maps that identified and

located the various ethnic groups in Europe (Kertzer and Arel 2002; Hansen 2015).

Initial efforts by German and Austrian geographers in the 1840s were quickly fol-

lowed by authors from Russia, the Balkans, and other parts of Europe, laying the

foundation for a scientific community dedicated to classifying and mapping ethnic

groups.

For the most part, maps were drawn based on census data on the town- or

9Prominent examples include the Armenian genocide (1915-1923), the 1923 population exchange
between Greece and Turkey, and the expulsion of Germans from Poland (1944-1950).
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district-level,10 and relied on native language as the defining attribute of ethnic

groups (Cadiot 2005; Hansen 2015). The production of ethnic maps was generally

viewed as a scientific endeavor, motivated by enlightenment-era ideals of measur-

ing and classifying the natural world (Livingstone, Withers et al. 1999). Mapmakers

therefore sought to establish common scientific standards and frequently accompa-

nied their maps with detailed justifications (Dörflinger 1999; Hansen 2015).

At the same time, however, ethnic maps and census data were also used for po-

litical purposes. In particular, states and nationalist movements used them to shape

perceptions of national homelands and support territorial claims (Herb 2002; An-

derson 1991). This was most evident at the Paris Peace conference of 1919, where

all parties relied on their own maps to support their demands (Palsky 2002). But

the scope for manipulation was generally limited. Because mapmakers largely

relied on the same data and methods, they could not arbitrarily “invent” ethnic

boundaries (Hansen 2015) without jeopardizing their scientific reputation (Herb

2002).11 Instead, most attempts to manipulate maps and census data involved the

subtle use of seemingly objective but politically convenient criteria as the choice of

data sources, population thresholds used to define local ethnic boundaries (Hansen

2015), and the underlying list of ethnic groups to be counted and mapped (Hirsch

1997; Cadiot 2005).12 At the same time, in particular early ethnic categorizations

may have affected ethnic identity formation itself, as people tended to identify with

the groups they were assigned to (Kertzer and Arel 2002; Anderson 1991).

Like all data on ethnic demographics, the political importance and potential

for manipulation of ethnic maps raises concerns about the validity of our data.

While many maps reflect earnest attempts to capture ethnic geography, those that

were manipulated for political purposes could bias our analysis. Lacking “ground-

truth” information on 19th century ethnic geography in Europe, our strategy to

mitigate such bias consists of four parts.

10Some maps were also based on philological research, travel reports, local ethnographic research
and previous maps (Dörflinger 1999; Hansen 2015).

11Open manipulation had consequences, as when many geographers boycotted the journal Peter-
mann’s Geographische Mitteilungen when German nationalist Paul Langhans became its editor (Herb
2002).

12For example, Kertzer and Arel (2002) note that Greek, Serbian and Bulgarian nationalists in the
late 19th century used alternative linguistic criteria to justify their claims on parts of Macedonia.
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(a) 1878 map of “Great, White, and Little
Russians” (Russians, Belarussians, and
Ukrainians) by August Peterman

(b) Detail at the Belarussian-Russian
ethnic boundary, red square in (a)

(c) Ethnic boundaries from (b) and other
maps (1835-1885) overlaid with graph G

(d) Ethnic boundary1886 measure after
aggregation to network edges

(e) Hungarian settlement area from 9 pre-1886
maps overlaid with G

(f) Slovenian settlement area from 8
pre-1886 maps overlaid with G

Figure 2: Constructing ethnic boundary from historical ethnic maps
Note: (a)-(d) show the transfer of ethnic map data onto graph G. (e) and (f) show Hungarian and
Slovenian settlement areas from multiple maps each. Darker areas are coded as
Hungarian/Slovenian in more maps. Straight lines result from some maps’ partial coverage.
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First, we carefully screened our map material to exclude the most obvious cases

of political bias. Starting with over 350 maps, we selected the 73 most suitable maps

based on their absence of obvious bias as well as their spatial resolution and pre-

cision.13 These maps were drawn by 61 authors from 16 different nationalities and

cover various parts of Europe at different points in time, in part using different cat-

egorizations of ethnic groups.14 Second, we construct an average measure of ethnic

boundaries across all maps from a given period to reduce the impact of remain-

ing biases on any one map. Third, our spatial graph G is relatively coarse with

a baseline spatial resolution of 100 km and up to 200 km in a robustness check.

Most differences between and manipulations of ethnic maps will affect substan-

tively smaller areas (see Figure 2). Fourth, we show that our results are robust to

exclusively using pre-1886 ethnic boundaries to explain state border changes be-

tween 1886 and today. This rules out reverse causality and strategic map manipu-

lations during the World Wars.

Based on the collection of historical maps, we construct our main independent

variable ethnic boundary as the proportion of maps from a given period in which

an edge crosses an ethnic boundary. Illustrated in Figures 1c and 2d, this average

measure of ethnic boundaries translates discrepancies across maps into meaningful

spatial variation.15 The variable is formally defined as

ethnic boundaryj,k,t =
1

Mj,k,t

Mj,k,t∑
m=1

1gm,j 6=gm,k
(1)

where j and k are an edge’s constitutive nodes observed in year t. The ensemble

of maps Mj,k,t consists of the set of maps that cover the geographic location of j

and k in one of the 50 years prior to t. The variable ethnic boundaryj,k,t is the simple

arithmetic mean of the map-level indicators that are 1 if a map m shows nodes j

and k as being located in different ethnic settlement areas and 0 otherwise.16

13Appendix C.1 details our selection criteria, presents examples of discarded maps, and shows the
maps’ metadata.

14On the grouping problem of ethnic identities see, e.g., Posner (2004, 850-1).
15If, for example, a “fluid” ethnic boundary is depicted differently across maps, our final measure

captures it as a gradient.
16Where a map shows overlapping ethnic settlement patterns, we compute the share of groups for

which gm,j differs from gm,k.
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Modelling and estimation

Our modelling strategy starts from the idea that the partitioning of geographic

space into states results from ‘attractive’ and ‘repulsive’ forces between different

locations. These forces mirror factors that affect the formation of a border between

two points, for example a river easy to defend, a watershed that facilitates bargain-

ing, or an ethnic boundary in the focus of nationalists. If two points are attracted

to each other, they likely form part of the same state. If pulled apart by repulsive

forces, they may be divided by a border. Each point is attracted to or repulsed by

multiple neighboring points but can only be part of one state. A point’s ultimate

‘membership’ is therefore the probabilistic result of the interplay of the attraction

and repulsion exerted by all its neighbors as well as the forces among them.

The Probabilistic Spatial Partition Model (PSPM) introduced here captures this

logic by modeling the partitioning of space as the partitioning of a planar network.

Crucially, the model allows us to estimate the attractive or repulsive forces resulting

from multiple attributes of the edges in the network. When testing our argument

that ethnic differences repulse points from each other and thereby causing a state

border between them, the PSPM can thus account for covarying spatial features that

influence ethnic settlement patterns and exert their attractive or repulsive forces, as

for example watersheds or rivers. In the following, we first present and validate

the PSPM in general terms and then introduce the empirical strategy implemented

to test our theoretical argument.

Probabilistic Spatial Partition Model

We model state territories as contiguous and mutually exclusive clusters of nodes

(partitions) of the spatial graph G introduced above. The empirical goal of our

model is to estimate the magnitude and uncertainty of the effects of edge-level

attributes while accounting for dependencies in the graph. We here present the

fundamentals of the model, discuss its relation Exponential Random Graph Models

(ERGMs), explain our approach to estimation and the quantification of uncertainty,

and summarize the results of validating Monte Carlo experiments. We refer to

Appendix A for any further details.
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(a) (b) (c) (d) (e)

Figure 3: Illustration of the Probabilistic Spatial Partition Model
Note: Spatial lattice with two border determinants, an ethnic boundary (red) and a river (blue).
Depicts five possible partitionings of the lattice, each attributed with a total energy ε and a
probability Pr. For illustrative purposes, we set the following parameters: β0 = −1;
βethnic boundary = 1, βriver = 0.5. The potential energy of each edge (from top, clockwise) is .5, -1, 0, and
-.5 (Eq. 5). Total energies and probabilities based on Eq. 2 and Eq. 3.

The model: We model the distribution over all possible partitionings P of our

lattice G as a Boltzmann distribution:

Pr(P = pi) =
e−εi∑|P|
i=1 e

−εi
, (2)

where the realization probability of partitioning pi decreases with its energy εi. The

term energy reflects the origin of the Boltzmann distribution in modelling the con-

dition of a system in statistical mechanics (e.g., Park and Newman 2004). Because

systems typically move towards a low energy, low-energy partitionings are associ-

ated with comparatively high probabilities.

Applied to the partitioning of space into states, we can interpret the energy εi as

the sum of inter- and intrastate tensions that result from a given partitioning. Figure

3 illustrates this intuition for a spatial lattice with four points separated by an ethnic

boundary and a river. The plot maps five (out of twelve possible) partitionings of

the lattice, the color and numbering of each node indicating its ‘country.’ In the

example, tensions result where a state is too small (b and d), or is crisscrossed by

an ethnic boundary (a and c) or a river (a and e). Intuitively, partitionings with

ubiquitous tensions to the left are less likely than those with low tension levels to

the right.

We assume that a partitioning’s total energy εi is determined by the sum of

realized energies associated with the edges that connect all first-degree neighbour
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node pairs L on the lattice:17

εi =
∑
j,k∈L

εj,k ∗ sj,k, (3)

whereby the potential energy εj,k of the edge between nodes j and k is realized if j

and k are part of the same state (sj,k = 1, solid lines in Figure 3) and is not realized

if they are part of different states (sj,k = 0, dotted lines in Figure 3). At the focus of

our empirical interest are the determinants of each edges’ potential energy:

εj,k = β0 + β xj,k, (4)

which defines the potential energy ε of the edge between nodes j and k as the

sum of a constant β0 that captures the baseline repulsion between nodes and edge-

level characteristics xj,k weighted by the parameter vector β. In our case and as

discussed in the next section, xj,k includes the indicator ethnic boundaryj,k and ad-

ditional edge-level covariates. While we have manually set the β parameters in

Figure 3 for illustrative purposes, our empirical goal is to estimate them from the

observed partitioning of Europe.

Because the probability of observing a partitioning decreases in its total energy

(Eq. 2), coefficient estimates can be interpreted as follows: Variables associated with

a positive estimate exert a repulsive force on nodes and increase the probability of

them ending up in different partitions. Those with a negative estimate exert an

attractive force, decreasing the chance that a border separates two points.

Applied to our illustration in Figure 3 where we have manually set

βethnic boundary > βriver, this means that state territories aligned with the ethnic

boundary have the highest probability (d and e). Borders that exclusively follow

the river (c) have a somewhat lower probability. Finally, because of a constant base-

line attraction between nodes caused by a negative β0, partitionings with many

small countries have a relatively low likelihood (b and d).

Because edge values of sj,k are strongly interdependent, a direct interpretation

of coefficients is difficult for most edges in G. The one exception consists in bridge

17More complex PSPMs could, in principle, account for higher-level predictors, such as partitions’
compactness.

18



edges. Bridge edges connect two otherwise disjoint network parts (i.e. a peninsula

with the continent) and can therefore freely switch sj,k without violating the tran-

sitivity requirement. For these edges, we can interpret coefficient estimates in par-

allel to a standard logistic regression model by computing odds ratios, predicted

probabilities and marginal effects (see Appendix A.2).

Relation to ERGMs: We can reformulate the PSPM as a Exponential Random

Graph Model (ERGM, Park and Newman 2004). ERGMs have become a promi-

nent inferential method for network analysis (Cranmer and Desmarais 2011) and

are used to analyze, for example, international alliances (Cranmer, Desmarais and

Menninga 2012) or social network formation (Lazer et al. 2010). To transform the

PSPM into an ERGM, we can reformulate P (P = pi) as the probability of the re-

alization of graph yi that exclusively connects members of the same partition. The

distribution Y from which yi originates is restricted such that each connected com-

ponent (partition) in yi is an induced subgraph of our baseline latticeG, i.e., includ-

ing all edges between the component members, thus yielding valid partitionings.

Estimation and uncertainty: We estimate the β-parameters in Eq. (4) using a

maximum composite likelihood approach (Lindsay 1988; Varin, Reid and Firth

2011). Here, the likelihood function is the product over the conditional probabili-

ties that a vertex takes on the observed partition membership, defined based on the

membership of its neighbors. We implement a Gibbs sampler that uses the same

logic to sample from the set of possible partitionings |PG| of graph G, given edge-

level predictors xi,j and known parameters β. The sampler allows us to derive

standard errors from a parametric bootstrap.18

Validation: We test the validity of inferences drawn from our model in an exten-

sive series of Monte Carlo experiments presented in detail in Appendix B. Across

varying β parameter combinations, our results demonstrate that our estimator is

18The parametric bootstrap consists of (1) sampling 120 new partitionings based on the estimated
coefficients, (2) re-estimating the parameters using the sampled partitionings, and (3) deriving 95%
confidence intervals from the resulting parameter distribution. We sample from independent chains
with a burn-in rate of 100 iterations. See Appendix A.3.
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asymptotically unbiased in the size and number of independent networks, and that

parametric bootstrapping produces consistent frequentist uncertainty estimates.

Empirical strategy

To test Hypothesis 1, we estimate the effect of ethnic geographies on the partition-

ing of our spatial lattice Gt into states with the following baseline specification of

the edge-level energy function:19

εj,k,t = β0 + β1 ethnic boundaryj,k,t + γ Xj,k, (5)

where β0 is the baseline repulsion between nodes and ethnic boundaryj,k,t captures

whether the nodes of an edge are located in different ethnic settlement areas (Eq. 1

above). To avoid bias from omitted spatial features, Xj,k must capture factors that

cause ethnic as well as state borders. We therefore include time-invariant indicators

for the length of each edge, the size of the largest river20 and watershed21 crossed by

an edge, and the mean elevation along it.22 Taken together, these covariates capture

important geographic causes of ethnic geography and state borders. We scale all

variables to range between 0 and 1 to facilitate the comparison of our coefficients.

A second analysis uses a lagged dependent variable model to test Hypothesis

2 and address reverse causality as the main inferential problem left open in the

cross-sectional baseline setting. If ethnic settlement patterns are the result of “right-

peopling” within state borders (e.g., Hobsbawm 1990) our estimate of β1 could be

systematically biased. A variant of Equation 5 accounts for past borders that may

have affected ethnic geography:

εj,k,t =β0 + β1 ethnic boundaryj,k,t−1 + β2 state borderj,k,t−1+

β3 deep lagj,k + γ Xj,k,
(6)

19Appendix D.1 also presents results from an edge-level benchmark logistic regression. Estimates
are biased upwards and standard errors overconfident.

20We code 9 ordinal levels following the Natural Earth data: https:
//www.naturalearthdata.com/downloads/10m-physical-vectors/
10m-rivers-lake-centerlines/

21We code a 7-step ordinal variable increasing with the Pfaffstetter scale of watersheds. Data from
Lehner, Verdin and Jarvis (2008).

22Elevation data comes from Hastings et al. (1999).
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where we model the potential energy of an edge observed in period t as depend-

ing on ethnic and state borders 25 years earlier in t − 1. In other words, to ex-

plain state borders in 1936, we control for state borders in 1911 and construct

ethnic boundaryj,k,t−1 from ethnic maps drawn between 1860 and 1910. Because the

ethnic boundaries are measured in data produced in the 50 years preceding the

lagged dependent variable (see also Eq. 1), no border changes between t− 1 and t

can impact ethnic boundaryj,k,t−1. This avoids bias from reverse causality.

To furthermore exclude the possibility of historical borders causing ethnic

boundaries and being reestablished as “new” borders, the lagged dependent vari-

able model controls for a “deep lag” of state borders defined as the share of years

in which an edge crosses a border in the years 1100, 1200, ..., 1600, and 1790 as ob-

served by Abramson (2017).23 Because we lack early-19th century ethnic maps, we

cannot estimate the lagged dependent variable specification for the 1886 outcome

data.

In our main analysis, we estimate our baseline and lagged dependent variable

models on the pooled sample of all historical snapshots. In a second step, we es-

timate a separate model for each period to gauge variation in the effects of ethnic

geography over time. Throughout, we use a parametric bootstrap with a burn-in

rate of 100 iterations to retrieve confidence intervals.24

Results

Overall, we find consistent support for our theoretical argument. We do not only

estimate a strong correlation of ethnic boundaries with state borders in the baseline

model, but also find similarly sized effects in our lagged dependent variable mod-

els. In other words, even when accounting for current and past political borders,

we find that ethnic settlement areas are strongly related to the formation of new

borders. We discuss a series of robustness checks thereafter.

Main results: Table 1 presents the main results obtained from estimating the base-

line the lagged dependent variable models on the pooled data. The findings sup-
231790 is the last year Abramson (2017) covers.
24Appendix D.4 shows robustness to burn-in rates between 10 and 1000 iterations.
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Table 1: Determinants of state borders in Europe, 1886–2011

Baseline Lagged Dep. Var.
Constant −2.25∗ −3.01∗

[−2.44;−1.98] [−3.45;−2.55]
Ethnic boundaryt 1.24∗

[1.12; 1.45]
Ethnic boundaryt−1 1.03∗

[0.81; 1.26]
State bordert−1 1.65∗

[1.44; 1.92]
Deep lag 0.80∗

[0.42; 1.20]
Edge length −0.30∗ −0.32∗

[−0.49;−0.15] [−0.61;−0.04]
River 0.25∗ 0.22

[0.05; 0.48] [−0.18; 0.53]
Watershed 0.64∗ 0.76∗

[0.42; 0.82] [0.47; 1.09]
Elevation mean 0.26 0.31

[−0.48; 0.82] [−0.90; 0.99]

No. of periods 6 5
No. of vertices 6769 5412
No. of edges 17923 14243
No. of states 189 177

Notes: Each period t has a length of 25 years. 95% confidence intervals from parametric
bootstrap in parenthesis. ∗ Statistically significant at the 95% level.

port our theoretical argument and corroborate further predictions from the broader

literature. The negative constant shows that the nodes in our lattice are generally

attracted to each other when we set all covariates to zero. This attraction is mitigated

by our independent variables.

First, the coefficient of (lagged) ethnic boundaries is positive, showing that

nodes located in differing ethnic settlement areas repulse each other. The respec-

tive effect is only slightly larger in the baseline model than in the lagged dependent

variable model which accounts for past borders and their determinants. This result

shows that the baseline estimates are not simply driven by reverse effects of state

borders on ethnic geographies and omitted variables that have a simultaneous ef-

fect on both. Importantly, the effects of ethnic boundaries are sizeable. They are

associated with almost two thirds of the energy attributed to a lagged state border
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and 4 to 5 times the energy attributed to the largest European river (the Danube).

Conditional on ethnic boundaries, the remaining estimates mostly support pre-

vious theoretical arguments. Large watersheds and rivers are likely to divide lo-

cations into different states. We find no robust evidence that high-altitude terrain

supports border formation. Lastly, and consistent with the findings by Abramson

and Carter (2016), the lagged dependent variable model shows that state borders

from between the 10th and 18th century continue to separate nodes after 1886.

Interpretation of effect sizes: Table 1 says little about the estimated absolute ef-

fect of ethnic boundaries on state borders. As discussed above, we can interpret

the coefficients in parallel to those of a logistic regression for edges that bridge oth-

erwise disjoint parts of the lattice and are therefore independent. For these bridge

edges, the coefficient of ethnic boundary implies an odds ratio of 3.5 [3.1, 4.3] for the

baseline model. Holding all covariates at their median values, an ethnic bound-

ary thus leads to an increase in the probability of crossing a state border from 10.6

[8.9, 12.0] to 29.0 [26.4, 32.2] percent.25 This is a lower bound to the effect of ethnic

boundaries which increases as they cross multiple interdependent edges.

To interpret the results for this more common case of interdependent edges,

meaningful interpretation requires repeatedly sampling partitionings of the entire

graph. Averaging across the resulting set of partitionings, we can compute edge-

level border probabilities. To assess the effect of ethnic boundaries, we sample two

types of partitionings. The first type is sampled from the observed data. The sec-

ond, counterfactual type is sampled after erasing all ethnic boundaries but holding

all other covariates at their observed values. The joint effect of all observed ethnic

boundaries on an edge is then the difference between its probability of crossing a

state border derived from the observed and that obtained from the counterfactual

data.

Figure 4 plots the results of this procedure. Panel (a) and (b) map the pre-

dicted probabilities of each edge derived from the observed and counterfactual

data for the year 2011 using the estimates from our baseline model. Comparing

2595% confidence intervals in parentheses. The lagged dependent variable model yields an odds
ratio of 2.8 [2.3, 3.5] and a border probability change from 5.5 [4.1, 7.3] to 14.1 [10.9, 17.8] percent at
median covariate-values.
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(a) Border probabilities predicted from observed data (2011), baseline model

(b) Border probabilities predicted without ethnic boundaries, baseline model

(c) Distribution of effect of ethnic boundaries on edge-level border probability

Figure 4: Effect of ethnic boundaries on predicted border probability of edges.
Note: Derived from Gibbs-sampling 120 partitionings of Europe. Based on observed data from 2011
in (a) and counterfactual data without ethnic boundaries in (b) and parameters from the baseline
model in Table 1. Burn-in rate of 100 draws. Grey nodes and edges have missing data on ethnicity.
Panel (c) plots the distribution of the difference in the predicted probabilities for edges crossing an
ethnic boundary. Straight lines are drawn at mean values.
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Figure 5: Effect of ethnic boundaries on the partitioning of Europe into states
Note: 95% CIs and grey areas show the distribution of bootstrapped estimates. The lagged
dependent variable model cannot be separately estimated for 1986 because of perfect collinearity of
1961 and 1986 borders.

Panel (a) with (b), we see that incorporating information from ethnic boundaries in

(a) greatly increases the fit of the predicted border probabilities with the contem-

porary map of Europe. Panel (c) plots the distribution of the difference between

these two estimates for all edges that cross an ethnic boundary. The plot clearly

shows that ethnic boundaries substantially increase border probabilities. On aver-

age, border probabilities increase by 35 percentage points in the baseline model. In

the lagged dependent variable model which models border change by controlling

for past borders, border probabilities increase by 17 percentage points. This lower

effect results from the relatively small baseline probability of border change.

Variation over time: Figure 5 disaggregates the results of the pooled models. To

shed light on the temporal dynamics in the reshaping of states, we estimate a sep-

arate model for each 25th year in our data (1885, 1911, ..., 2011). We see that the

association of state borders with ethnic boundaries estimated from the baseline

specification increases over time. The temporally disaggregated lagged dependent

variable models show that ethnic geography affected changes in state borders par-

ticularly around the turn of the 19th century, World War I, and between 1986 and
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2011 when the Soviet Union and Yugoslavia collapsed.26 World War II did come

with a slightly smaller ethnic alignment of state borders, and no changes occurred

in Europe between 1961 and 1986. In line with Skocpol (1979) and Abramson and

Carter (2020), these patterns show that systemic instability increases the risk of na-

tionalist border change.

Robustness checks

Our robustness checks assess whether the main findings are driven by potentially

endogenous changes in ethnic geography, the choice of control variables, as well

as the spatio-temporal structure of our data. Appendix D presents all details and

results of the analyses summarized below.

Pre-1886 ethnic boundaries: Political biases may affect in particular ethnic data

produced during the World Wars. In addition, our main results could be biased

by omitted factors that first changed ethnic settlement patterns and, temporarily

lagged, correlated border change. As a remedy, we use ethnic boundaries observed

in the 50 years prior to 1886 as time-invariant predictor and re-estimate our models.

The results in Figure 6 show that the effects of these stable historical ethnic bound-

aries are only marginally smaller than our baseline estimates. We also observe a

similarly increasing alignment of state borders to ethnic boundaries as above. Reaf-

firming the absence of reverse and providing evidence against political bias in our

analysis, the lagged dependent variable results show that pre-1886 ethnic bound-

aries continued to affect border changes even a century later.

Control variables: We assess whether our main results are sensitive to the speci-

fication of control variables. First, we re-estimate our main models without control

variables. Second, we add control variables to the baseline specifications, control-

ling for terrain ruggedness, 1880 population density around vertices,27 as well as

26Our results are consistent with the fact that Post-Soviet and Post-Yugoslav borders mostly fol-
lowed administrative boundaries. These were often created based on ethnic geography (e.g., Hirsch
2000) and only administrative borders that roughly coincided with ethnic divides were ‘upgraded’
to state borders.

27From Goldewijk, Beusen and Janssen (2010).
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Figure 6: Effect of pre-1886 ethnic boundaries on the partitioning of Europe into
states
Note: 95% CIs and grey areas show the distribution of bootstrapped estimates. The lagged
dependent variable model cannot be separately estimated for 1986 because of perfect collinearity of
1961 and 1986 borders.

the absolute longitude and latitude change covered by an edge.28 These variations

do not substantively change the estimated effects of ethnic boundaries.

Variation of the data structure: We also test the sensitivity of our results to our

spatio-temporal data structure. Regarding the temporal dimension, our results are

robust to varying the length of periods t between 5 and 65 years.29 We also imple-

ment robustness checks that vary the three parameters that determine the spatial

data structure: the location of the ‘anchor’ vertex, the length of its edges, and its

connectivity structure. First, we shift our network 100 times in the east-west and

north-south direction. Second, we vary the length of edges between 50 and 200km.

Third, we implement triangular, quadratic, and random lattice structures. For each

resulting network, we regenerate the entire dataset and re-estimate our main speci-

fication. Our estimates remain statistically and substantially significant and similar

to the baseline results across all network specifications. As additional evidence

against potential bias from ethnic maps that are erroneous or manipulated, effects

28This is to follow up on findings that countries tend to be east-west oriented (Laitin, Moortgat
and Robinson 2012).

2965 years is the maximum period length that produces at least two periods.
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increase with coarser networks in which spatial measurement error becomes less

relevant.

In sum, our robustness checks show that the main results are not due to either

endogenous changes in ethnic boundaries over time or potentially arbitrary mod-

eling decisions of ours. The consistency of results with early ethnic data and coarse

spatial networks also suggests the absence of substantive bias from political ma-

nipulation of ethnic data. In the next section, we provide evidence on secessionist

claims and conflicts as an important mechanism through which ethnic geography

shapes state borders in the age of nationalism.

Secessionist claims and conflict

We now empirically assess the argument that secessionism drives the border-

changing effects of nationalism, a result of the fact that there are more potential

ethnic nations than realized states. To do so, we analyze whether ethnically dis-

tinct peripheral regions were indeed more likely to experience secessionist claims,

conflict, and ultimate secession from their host states since 1946.

Data

Building on the main analysis, we use the vertices of our baseline lattice as our units

of analysis.30 Doing so avoids units that are either spatially misaligned with our

(in)dependent variables or defined based on state borders. For each point and year

since 1946, we code whether it is (1) claimed by a self-determination movement, (2)

fought over in a secessionist ethnic civil war, and (3) affected by a successful seces-

sion. Data on secessionist self-determination claims between 1946 and 2012 come

from the GeoSDM dataset (Schvitz, Germann and Sambanis 2020, and Appendix

C.2). The Ethnic Power Relations data (Vogt et al. 2015) provides information on

the settlement regions of ethnic groups associated with secessionist civil wars be-

tween 1946-2016. Lastly, we code the secession of points when they become part of

a newly independent state in the CShapes 2.0 data (Schvitz et al. 2021).

30Appendix E shows robustness to different spatial data structures.
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Our argument holds that peripheral groups that do not share the ethnic iden-

tity of states’ core groups are most likely to seek national self-determination. We

capture this logic by measuring whether locations are ‘non-coethnic’ to their state’s

capital. More precisely, we assess whether a point j and its capital Cj,t are lo-

cated in settlement regions of different ethnic groups g depicted on ethnic maps

m ∈Mj,Cj,t,t that were collected in the 50 years prior to t:31

Non-coethnic capitalj,t =
1

Mj,Cj,t,t

Mj,Cj,t,t∑
m=1

1gm,j 6=gm,Cj,t
(7)

Empirical strategy

Our main modelling problem consists in the fact that successful secession entails

an endogenous change in the ‘treatment’ assigned to seceding regions. To avoid

this type of selection bias, we model the onset of secessionist claims, conflicts, and

successful secession using a Cox Proportional Hazard Model:

h(τ)j,t = h0(τ) exp(β1 non-coethnic capitalj,t + γ Xj,t + εj,τ ) (8)

where h(τ)j,t is the expected risk of seeing the onset of one of the three outcomes

in point jin calendar year t and relative time τ – the count of years since j became

a member of its current state. This counter starts with our data in 194632 and is

restarted when a point changes its state membership.33

Next to our variable of interest non-coethnic capitalj,t, we add controls Xj,t. These

follow two logics. The first mirrors the dyadic controls from the main analysis

above, capturing the distance (logged), size of largest river and watershed, as well

as the mean elevation between a point j and its capital Cj,t, and the fraction of

centuries (1000-1790) in which the two have been located in the same state. The

second logic focuses on points j only, reflected in controls for the local population

density (logged),34 the altitude and terrain slope (FAO 2015), as well as each points’

31Results are robust to using pre-1886 ethnic data (Appendix E).
32This is the starting point of the EPR and GeoSDM data. The end of World War II also marks a

critical juncture which arguably restarted the survival ‘clock’ in much of Europe.
33Because observations after such a change may be endogenous, Appendix Table A6 analyzes only

periods starting in 1946. This increases the estimated effects.
34Time-varying in decadal steps, from Goldewijk, Beusen and Janssen (2010).
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distance to the closest border (logged). In combination, these control variables ac-

count for the most important joint structural causes of peripheral minority status

and secessionist conflict (e.g., Carter, Shaver and Wright 2019).

In a variant of Equation (8), we stratify the model and let the baseline hazard

h0(t) vary between country-years. Similar to country-year fixed effects, this ac-

counts for any time-varying factor at the country level (e.g., the breakup of the

USSR) that affects the risk of secession. To account for spatial interdependence of

our outcomes, we cluster standard errors on ‘stable state segments,’ sets of points

that were always jointly members of the same states.

Results

Table 2: Ethnic boundaries and the onset of self-determination claims, conflict, and
border change

Cox Proportional Hazard Model

Secessionist Claim Secessionist Civil War Secession

(1) (2) (3) (4) (5) (6)

Non-coethnic capital 2.602∗∗∗ 1.736∗∗∗ 2.766∗∗∗ 2.086∗∗∗ 3.918∗∗∗ 2.922∗∗∗

(0.337) (0.381) (0.471) (0.369) (0.609) (0.694)

Events: 207 207 122 122 153 153
Country-year strata: no yes no yes no yes
Controls: yes yes yes yes yes yes
Observations 61,607 61,607 67,587 67,587 71,851 71,851
R2 0.007 0.005 0.005 0.003 0.007 0.005
Max. Possible R2 0.045 0.031 0.025 0.019 0.029 0.023
Log Likelihood -1,217.990 -826.011 -697.294 -534.679 -781.121 -623.632

Notes: Cox Proportional Hazard models. The unit of analysis is the point-year between 1946 and 2012.
Standard errors clustered on state-segments. Full results with control variables are reported in Table A5.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

.

The results of the survival models clearly show that ethnically distinct regions

are more likely to experience secessionist claims, conflict, and border change than

other regions. Combined with the main results, this suggests that secessions drive

the increasing alignment of state territories and ethnic geographies. We find large

and statistically significant effects of being ruled from a non-coethnic capital on de-

mands for and realizations of secession. Transforming the coefficients from Table 2

into hazard ratios, such regions have a 6-16 times greater hazard of being claimed

by a secessionist movement, a 9-22 times higher risk of being fought over in a se-
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Figure 7: Effect of ethnic boundaries on secessionist claims, conflict, and
successful secession.
Note: Predictions with 95% CIs based on Models 1, 3, and 5 in Table 2, setting all covariates to the
sample median.

cessionist civil war, and a 18-50 times higher risk of seceding from their state than

capitals’ co-ethnic regions.

These patterns are reflected in a high probability of ethnically peripheral regions

to experience secession and its political and violent antecedents (Figure 7). Over 50

years and holding covariates at their median value, such regions have a probabil-

ity of about 39 percent to be part of a claimed, violently pursued (19 percent), or

realized border change (40 percent). The respective probabilities for co-ethnic ar-

eas are close to zero. While the break-up of the USSR and Yugoslavia dominate

the patterns of secessions, these results show that secessionism of peripheral ethnic

groups drives the alignment of state borders with the ethnic map.

Global comparison

Our findings have so far been limited to 19th and 20th century Europe. Do they

also generalize and explain borders and border change in other world regions?

This section sheds some limited light on this question by comparing the effects of
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Figure 8: Effect of ethnic boundaries in 1964 on the 2017 partitioning of the five
largest continents into states: Baseline and lagged dependent variable models
Note: 95% CIs and grey areas show the distribution of bootstrapped estimates. The Americas did
not experience any large-enough border change since 1964, prohibiting the estimation of lagged
dependent variable models.

ethnic geography on borders and border change in Africa, Asia, Europe, and the

Americas.

For this comparison, we create five lattices of the same spatial structure as

above, each covering one continent. We then use our main PSPM specifications35 to

estimate the effect of ethnic boundaries on state borders observed in 2017. We draw

on the earliest global data on ethnic geography from the 1963 Soviet Atlas Narodov

Mira (Weidmann, Rød and Cederman 2010). Adapted to this data, the lagged de-

pendent variable models control for state borders observed in 1964. Given the lack

of historical state border data with global coverage, we cannot control for the ‘deep

lag’ of borders between 1000 and 1800 AD.36

Starting with Africa, the results in Figure 8 support the conventional wisdom

that decolonization and the uti possedetis norm preserved the haphazard colo-

nial borders drawn with little reference to ethnic geography (Griffiths 2015; Mi-

chalopoulos and Papaioannou 2016). The baseline coefficient is relatively small (yet

statistically significant) and the lagged dependent variable results show that ethnic

boundaries did not significantly affect border change since 1964. Turning to Asia,

35See Equations 5 and 6.
36This omission does not significantly change results for Europe.
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the results suggest a more substantive effect of ethnic boundaries. Though ‘only’

half the size compared to Europe, ethnic boundaries significantly correlate with not

only the stable set of borders in 2017 but also border changes since 1964. This result

is mostly due by the independence of ethnically distinct Soviet Republics in Cen-

tral Asia and the southern Caucasus. Lastly, in the Americas we observe a stronger

cross-sectional correlation between ethnic and state boundaries in the North than

in the South. The absence of border change since 1964 prohibits the estimation of a

lagged dependent variable model.

In sum, these results yield two insights. First, state borders are aligned with

ethnic boundaries at a global scale, with states in Africa showing the least align-

ment. Second, ethnic boundaries that cut across state borders seem to effect border

change in Asia and Europe but not elsewhere. Ongoing ethno-nationalist conflicts

from secessionist Kurdistan to border disputes between India and Pakistan sug-

gest that the ethnic reshaping of Asian states may still be ongoing. In Africa in

contrast, outright secessionist conflict is comparatively rare and the territorial in-

tegrity norm is generally upheld (Englebert and Hummel 2005; Zacher 2001). This

does unfortunately not imply the absence of ethnic conflict that fragments states

without changing their borders.

Conclusion

Gellner (1983, 1) famously defined nationalism as “a political principle which

holds that the political and national unit should be congruent.” We have analyzed

whether, by how much, and how this ideal reshaped European states along ethnic

boundaries over the past 150 years. In doing so, we contribute to the literature on

international borders that has so far lacked systematic empirical analyses of their

origins.

Theoretically, we have drawn on a rich and mostly qualitative literature that

highlights the impact of nationalism on international borders through secession

and, in fewer cases, national unification and irredentism. Over time, these pro-

cesses have gradually increased the fit between state borders and the underlying

ethnic map. We test this proposition by new spatial data on ethnic settlement pat-
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terns since 1855, developing a new Probabilistic Spatial Partition Model, and esti-

mating the effect of ethnic geography on the partitioning of Europe into state terri-

tories.

Our results show that ethnic boundaries have large and consistent effects on

the location and change of state borders since 1886. We estimate that an ethnic

boundary that separates two locations increases the likelihood of the presence of an

interstate border between them by 35 percentage points. Ethnic boundaries have

a similarly large effect on border changes since 1886, increasing by 17 percentage

points the probability of the presence of a state border conditional on the presence

of past state borders. Additional findings also substantiate our claim that seces-

sionist border change is a main driver of the ethnic reshaping of states. We find

that peripheral ethnic minorities are at 6 to 50 times higher risk to be subject to

secessionist claims, conflict, and final break away from their multi-ethnic state.

In sum, our findings suggest that ethnic geography has had a substantial and

continuing impact on the shape of European states, driven in particular by se-

cessionism. This has important implications for our understanding of state for-

mation and its effects in the long and intermediate run. For one, state borders

and the distribution of ethnic groups within them should not be treated as exoge-

nously given. Quite to the contrary, the number of states, their territorial shape

and ethnic makeup are in large parts the result of nationalist struggles for ethnic

self-determination. This should also be kept in mind when comparing ethnically

homogeneous European ‘nation-states’ with their mostly multi-ethnic counterparts

elsewhere on the globe.

Moreover, our results suggest that the ethnic alignment of state borders is an

ongoing process. Most notably, we estimate the largest effect of ethnic geogra-

phy on border change for the period after 1986, which featured the collapse of the

USSR and Yugoslavia. Secessionist movements continue to challenge the borders

of, for example, the Ukraine, Spain, and even France. The rising demands for Scot-

tish independence and Irish unification in the wake of Brexit only underscore that

nationalist struggles to redraw border remain central to contemporary politics in

multi-ethnic states in Europe.

Looking beyond Europe, we have found similar dynamics of ethno-nationalist
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border changes in contemporary Asia but not elsewhere. Mostly driven by se-

cessions of former Soviet Republics, the available data have insufficient historical

depth to draw firm conclusions on whether the region (and any other continent)

follows a macro-historical trajectory similar to the European one or not.

The answer to this question will foreshadow the future of many multi-ethnic

states. Although our analysis of the European context is primarily structuralist,

we caution against deterministic extrapolations of the continent’s history. While

we deem it important to recognize the potential of ethnic centrifugal forces, previ-

ous research suggests that peacefully containing them within given state borders

is possible. Addressing the ideological and material foundations of ethnic nation-

alism may, for example, require reducing injustices through ethnic power-sharing

and regional accommodation (Cederman, Gleditsch and Buhaug 2013). More radi-

cally, dissociating states from nations (Mamdani 2020) may succeed in depoliticiz-

ing and bridging ethnic divides. On the international stage, enforcing the territo-

rial integrity norm (Zacher 2001) may furthermore rein in nationalist revisionism.

Alarmingly, however, at this very moment in history, such progress is endangered

by nationalist forces in influential states such as the United States, Russia, India, or

China.
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A Probabilistic Spatial Partition Model

A.1 A distribution over partitionings

Our model operates on a lattice graph G, typically a planar graph with grid-like
structure that is superimposed over the area of interest. G consists of N nodes and
M edges, where edges connect neighboring nodes.

Our model is based on a probability distribution defined over all contiguous
partitionings of G. A contiguous partitioning is an assignment of G’s nodes into
K ≤ N groups, called partitions, such that any two member nodes of a partition k
are connected on G through a path that only passes through other member nodes
of k. To give an example, consider a simple lattice with four nodes, arranged in a
square, each connected to their two orthogonally adjacent neighbors. There are 12
contiguous partitionings possible on this baseline lattice: One where all nodes are
isolated, 2 partitionings of 2+2, 4 partitionings of 3+1, 4 partitionings of 2+1+1, and
one partitioning where all nodes are in the same partition.

We give the probability distribution over partitionings the form of a Boltzman
distribution,

Pr(P = pi) = Z−1e−εi , (A1)

where P is a random variable denoting the partitioning of G, pi is some realized
partitioning with index i, and εi is the ‘energy’ associated with partitioning i. The
term ‘energy’ for ε is owed to the Boltzman distribution’s origin in statistical me-
chanics (Park and Newman 2004). Besides the usefulness of having a name for ε
and as explained in the main paper, ε can be intuitively interpreted as total ‘politi-
cal tension’ in the system when applying the model to the partitioning of space into
political units. Finally, Z is a normalizing sum,

Z =

|P|∑
i=1

e−εi , (A2)

with P being the set of possible contiguous partitionings.
In our model, the partitioning energy εi is a function of edge-level energies. Let

εj,k represent the energy value of the edge that connects nodes j and k. Further,
let sj,k be a variable that takes a value of 1 if nodes j and k are part of the same
partition, and zero otherwise. Then we define

εi =
∑
j,k∈L

εj,k ∗ sj,k, (A3)

where L is the set of all node pairs that are connected by an edge in G. In other
words, the energy of a partitioning is given by the sum of the energy of all edges
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that connect two nodes of the same partition.
It is worth noting an important implication of this setup: Distribution (A1)

‘prefers’ (i.e assigns higher probability to) partitionings where partition borders
coincide with high-energy edges. This relationship allows us to formulate a model
where the probability of observing any given partitioning is a function of edge-
level covariates (like observed natural obstacles). In practice, we specify a linear
relationship,

εj,k = β xj,k, (A4)

where xj,k is a vector of edge-level covariates and a unit constant, and β is a pa-
rameter vector of corresponding length.

To illustrate how the edge-level covariates and parameters determine the prob-
ability of different partitionings, let us discuss a simple example. Say we have a
covariate measuring whether an edge crosses a river. If the respective β parameter
is positive, then the presence of rivers will increase the energy of all edges crossing
rivers. As a result, ceteris paribus, partitionings where partition borders run along
rivers are now more probable than other partitionings. Naturally, the same applies
to any covariate measuring any type of distance. For these, positive β parameters
imply that larger distances increase the likelihood of partition boundaries between
nodes, and vice-versa for negative β parameters.

A.2 Reduction to simple logistic relationship for bridge edges

The partition model reduces to a logistic model for every edge between nodes u and
v for which su,v is independent of the remainder of the network. This is the case for
any edge that can switch the state(s) of its nodes without violating transitivity and
contiguity assumptions. These edges are in particular bridge edges, connecting two
otherwise disjoint parts of the lattice.37

Assume such an edge connects vertex v with its neighbor u on the graph G. In
relation to u, v can only take on two possible outcomes, su,v ∈ {0, 1}: v can either
be in the same partition as u or form its own partition. It cannot take on another
outcome, such as being in the same partition as any neighbor w of u. We show in
the following that the probabilities of the two outcomes su,v ∈ {0, 1} are therefore
independent of the overall network structure and can be derived directly from the
estimated parameters of the PSPM.

Holding constant the partitioning of all nodes I 6= v in G, define p1 as the par-
titioning where su,v = 0, i.e. where u and v are part of two different partitions,

37Note that the logic outlined below is the same as that explained by Cranmer and Desmarais
(2011, p. 73) who note that the results of an ERGM can be interpreted as a logistic regression model
if edges are independent.
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and p2 as the partitioning where su,v = 1. Following (A3), the total energy of each
partitioning is defined as

εp =
∑
j,k∈L

εj,k ∗ sj=k, (A5)

Since p1 and p2 only differ in su,v, the difference between the two partitionings’
total energy amounts to the potential energy of the edge between u and v:

εp2 − εp1 = εu,v (A6)

Because the normalizing sum Z from (A1) is the same for the probabilities of p1
and p2, we can derive the odds of p1 vs. p2 as

P (P = p1)

P (P = p2)
=
e−εp1

e−εp2

=e−εp1+εp2

=eεu,v

(A7)

As can be seen, the odds described by (A7) are the same for every possible
partitioning of nodes I 6= v in G and only depend on εu,v and not on the outcome
si,j of any other edge in the network. We can therefore generalize the relation to
describe the overall odds of v being in a different partition than u (su,v = 0) or not
(su,v = 1):

P (su,v = 0)

P (su,v = 1)
=

P (su,v = 0)

1− P (su,v = 0)
= eεu,v (A8)

Finally, this relation can be reformulated as a linear relationship between the
energy εu,v and the log-odds:

ln

(
P (su,v = 0)

1− P (su,v = 0)

)
= εu,v (A9)

This allows us, for bridge edges, to interpret the parameters that describe the
relationship between edge level covariates x and edges’ energy in the same manner
as coefficients derived from a logistic regression, including the derivation of odds
ratios, predicted probabilities, and marginal effects.

A.3 Sampling from the model

Before we discuss the estimation of our model, it is useful to discuss our approach
to sampling. Note that sampling from the distribution over partitionings directly
is infeasible for non-trivial sizes of G. The problem is that the number of possible
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partitionings, which we would have to iterate over, grows exponentially.38 For
instance, the number of possible contiguous partitionings of a 3x3 grid lattice is
1434; for a 10x10 grid lattice this number is of the order 1045 (see Sloane et al. 2003,
A145835).

A more practical approach is Gibbs sampling. Specifically, we sample the par-
tition membership of each node in G, conditioned on the partition membership of
all other nodes. A single Gibbs sample is completed once we have iterated over all
nodes in the baseline lattice.

To illustrate our Gibbs sampling approach, it is useful to think of partition mem-
bership not as a node attribute, but as a relational attribute between any two nodes.
To this end, let us slightly rewrite our probabilistic model over partitionings. Let H
be a complete graph between allN nodes inG. H will haveN(N−1)/2 edges. Each
edge of H is associated with a binary random variable Sj,k that captures whether
nodes j and k are in the same partition (sj,k = 1) or in distinct partitions (sj,k = 0).
Distribution (A1) can then be rewritten as

Pr(S = s) =

Z−1 exp
(
−
∑

j,k∈L εj,k ∗ sj,k
)

if s ∈ P

0 otherwise,
(A10)

where P is the set of valid contiguous partitionings on G, and S is a random vector
of all N(N − 1)/2 edge-wise S variables. Assigning a non-zero probability only if
the realized state vector s is in P is necessary because there are many permutations
of s that do not yield valid contiguous partitionings. For one, there are many per-
mutations of s where transitivity is violated, e.g. where node pairs (j, k) and (k, l)

are each assigned to the same partition (sj,k = 1 and sk,l = 1), but node pair (j, l)

is not (sj,l = 0). Moreover, there are many permutations of s where transitivity
holds, but the partitioning is not contiguous. We assign these permutations a zero
probability weight because they are not part of the sampling space of (A1).

We can sample from (A10) using block-wise Gibbs sampling. Specifically, we
sample from the conditional distribution Pr(Sj |S−j), where Sj is a vector of all S
for those edges adjacent to node j, and S−j is a vector of all remaining S. In other
words, we sample the partition membership of node j conditioned on the partition

38To our best knowledge, the exact function that maps lattices onto the number of possible con-
tiguous partitionings is unknown.
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memberships between all other nodes. The conditional distribution is given by

Pr(Sj = sj |S−j = s−j) =
Pr(S = s)∑

s
′
j∈ Sj Pr(Sj = s

′
j |S−j = s−j)

=


exp
(
−
∑

j,k∈Nj
εj,k∗sj,k

)
∑

s
′
j
∈ Sj

exp
(
−
∑

j,k∈Nj
εj,k∗s

′
j,k

) if s ∈ P

0 otherwise,

(A11)

where Sj is the set of all possible permutations of sj and Nj is the set of edges adja-
cent to node j in G. At first sight, expression (A11) seems difficult to sample from,
as it requires us to sum over all 2N−1 permutations of sj . In practice, however, we
only care about permutations that yield a valid contiguous partitioning, of which
there are few. In fact, there are only two types: One where sj is a zero-vector and
node j forms its own partition, and one where node j is part of a partition in its
neighborhood in G. These relevant permutations of sj are very easily identified,
and thus (A11) can be computed rapidly.

A.4 Estimation by Composite Likelihood

We are interested in obtaining an estimate for the parameter vector β. Ideally we
would do so by exact maximum likelihood, i.e. by solving

Instead, we pursue a maximum composite likelihood approach, where we ap-
proximate the full likelihood using a product over conditionals (Lindsay 1988; Varin,
Reid and Firth 2011). Specifically, we use expression (A11) and estimate β by max-
imizing the following log composite likelihood,

ln L̂C =

N∑
j=1

ln Pr(Sj = sj |S−j = s−j). (A12)

This is similar in structure to the pseudolikelihood proposed by Besag (1974), with
the key difference that Besag’s model estimates vertex-level outcomes on a lattice,
whereas we are interested in partition memberships. Though inefficient, maximum
composite likelihood generally yields consistent estimates (Lindsay 1988). How-
ever, it is important to note that asymptotic theory only ensures consistency as the
number of independent samples approaches infinity, not the number of random
variables in the joint distribution that is approximated. In our case, this means that
consistency is only ensured in the number of independent graphs G, not in the
graph size N (Varin, Reid and Firth 2011). Hence, whether consistency also holds
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in N is an empirical question, which we address in Appendix B below.
In order to obtain stable estimates where the likelihood is relatively flat, we

augment (A12) with a penalization parameter σ that nudges our estimate towards
0,39 thus obtaining our parameter estimates from

β̂ = arg max
β

ln L̂C(β ; p,X)− β2

2σ
(A13)

A.5 Standard errors

Because we estimate β by maximizing the (intentionally misspecified) compos-
ite likelihood (A12), we cannot use the observed Fisher information to estimate
var(β̂). One common approach for computing appropriate standard errors for
composite likelihood estimates is to substitute the Fisher information matrix with
the Godambe information matrix (Godambe 1960). However, obtaining unbiased
estimates of the Godambe matrix is difficult without many independent samples
(Varin, Reid and Firth 2011, pp. 29ff). For this reason, we adopt a resampling ap-
proach, relying on a parametric bootstrap algorithm to estimate standard errors
and confidence intervals (e.g., James et al. 2013, pp. 187-190). Our algorithm con-
sists of three steps:

1. Obtain B partitioning samples from the fitted model using the Gibbs sam-
pling approach described in Section A.3. For each sample, we start a separate
Gibbs chain. To achieve good mixing, we initialize each chain by assigning
each vertex its own partition and discard the first 100 ‘burn-in’ samples.40

2. Refit the model to each of the B partitioning samples, obtaining B parameter
vectors. β̂B .

3. Obtain confidence interval estimates for each scalar parameter βk by comput-
ing the empirical quantiles over the B βBk samples. See Section B.2 for simu-
lation results showing that this approach yields confidence interval estimates
with unbiased coverage.

B Model Evaluation: Monte Carlo Simulations

We conduct Monte Carlo experiments to test the performance of our model and
the Maximum Composite Likelihood estimator estimator. The main experiments
explore potential biases in estimates recovered by the estimator and investigate the

39Throughout this paper, we set σ = 10.
40See Section B.2 for an empirical evaluation of how the burn-in rate affects the parameter esti-

mates.
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precision of uncertainty estimates while varying the (1) burn in rate of our sampler,
(2) the size of networks, and (3) the number of independent instances. Biases stabi-
lize after a relatively short burn in period and decrease with the size and number of
networks. Biases are mainly concentrated in areas with separation issues. Standard
errors derived from the Hessian of the Maximum Composite Likelihood estimator
are consistent in most cases. Parametric bootstrapping offers an alternative method
to derive uncertainty estimates.

B.1 Simulation setup

(a) Predictor. Grey: x ∼ N(0, 1); red:
x ∼ N(1, 1)

(b) Sampled partitioning: β0 = −1;
β1 = 1; burn-in rate of 100

Figure A1: Monte Carlo simulation setup

Our simulation setup is visualized in Figure A1. For every simulation, we con-
struct a set of I instances of graphs G, each consisting of N vertices. Each lattice
covers a quadratic area and exhibits a hexagonal network structure. Each edge is
associated with a value of a single predictor. As shown in Figure A1a, the predictor
x – the experimental equivalent to an ethnic boundary, river, or mountain ridge – is
drawn from a normal distribution with mean 1 (x ∼ N(1, 1)) for the first, third, fifth,
..., column of edges, and from the normal distribution with mean 0 (x ∼ N(0, 1))
for all other columns as well as vertical edges. The differing means combined with
random local variation introduce a ‘typical’ geographic structure similar to, e.g.,
mountain ranges.41

41Note that values of x are drawn only once and are stable across instances of our experiments
where lattices are of the same size.
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We use the Gibbs sampler described in A.3 to sample the partitioning ofG based
on the following edge-level energy function:

εj,k = β0 + β1 x, (A14)

where we experimentally control β0 and β1, setting them to ‘realistic’ values, i.e.
letting vertices have a baseline attraction with β0 ranging between -2 and 0, and
making the predictor repulse vertices with a β1 ranging between 0 and 2.

In a last step, we use the sampled partition of G to estimate β̂0 and β̂1. For each
experiment, we vary one particular set of parameters and fix all others at a constant
value. For each parameter combination, we analyze 100 independently sampled
networks. We conduct one additional experiment to evaluate the consistency of
unvertainty estimates derived from a parametric bootstrap. Table A1 summarizes
the parameters governing each experiment. We run the experiments on a high-
performance server with 40 CPUs and 1.5TB RAM.

Table A1: Monte Carlo Experiment Parameters

Parameter values:
Experiment Iterations Beta 0 Beta 1 Network size Instances Burn-in rate Std. error

1. Burn-in rate 100 [-2, -1, 0] [0, 1, 2] 1024 1 [1, 5, 10, .., 1000] –
2. Network size 100 [-2, -1, 0] [0, 1, 2] [16, 64, .., 4096] 1 100 –
3. Instances 100 [-2, -1, 0] [0, 1, 2] 256 [1, 2, 4, 8, 16] 100 –
4. Para. bootstrap 100 [-2, -1, 0] [0, 1, 2] 1024 1 100 Bootstrap

B.2 Results

Following the structure of Table A1, we start by examining the upward or down-
ward bias in the results of our experiments. The bias of an estimated β̂k parameter
is defined in a straightforward manner as β̂k − βk. We examine this bias as a func-
tion of the burn-in rate, the size of graphs, and the number of independent graphs.
Lastly, we examine the quality of confidence intervals derived from a parametric
bootstrap. In sum, the results show that parameter estimate are asymptotically
consistent and that estimate uncertainty is well reflected in the bootstrapped confi-
dence intervals.

1. Burn-in rate: Figure A2 plots the results of experiment 1, examining the rela-
tionship between the burn-in rate of our Gibbs sampler and the bias in parameter
estimates. The graph shows that the bias decreases quickly, approaching 0 only
after 10–50 burn-in periods. In a set of experiments with a high baseline attraction
between nodes (β0 = −2) and no effect of our predictor (β1 = 0), we see that the
decrease in the bias in β̂0 is matched by an increase in the bias in β̂1. This is due
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Figure A2: Bias in parameter estimates and the burn-in rate.
Note: Resulting from Monte Carlo simulations with the following parameters: 100 iterations; 1024
nodes on a hexagonal lattice; 1 instance; burn-in rate, β0, and β1 as shown in graph.

to separation issues in the networks, which cause the two biases being negatively
correlated.

Based on these results, we choose as baseline burn-in rate of 100 for all following
experiments and examine the behavior of estimate biases as we vary the size and
number of networks.

2. Network size: In the next set of experiments, we examine whether biases in
the estimates produced by the Maximum Composite Likelihood estimator decrease
as we increase the size of networks. This is a necessary test as the estimators’ con-
sistency is only ensured in the number of independent graphs G, not in the graph
size N (see Section A.4 above; Varin, Reid and Firth 2011).

The results from increasing the size of our experimental graphs in exponen-
tial steps from N = 16 to N = 4096 show that, for the present application, the
estimator is asymptotically consistent. As plotted in Figure A3 the estimator bias
and variance decrease sharply in N and approaches 0 for all combinations of beta
parameters. This decrease is slowest in areas where our data is vulnerable to sepa-
ration problems, i.e. for β0 = −2. With this high baseline attraction between nodes,
we need very large networks to obtain unbiased estimates.
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Figure A3: Bias in parameter estimates and the size of spatial lattices.
Note: Resulting from Monte Carlo simulations with the following parameters: 100 iterations; 1
instance each; burn-in rate of 100; network size (hexagonal structure), β0, and β1 as shown in graph.

3. Number of instances: In the next step, we test whether our estimator is
asymptotically consistent in the number of independent instances of graphs G. For
that purpose, we increase the number of instances in exponential steps from 1 to
16. Figure A4 shows that the resulting biases and variance in β̂0 and β̂1 decrease
as our estimator draws on more independent data. We again note that this de-
crease is slowest in areas where our data is vulnerable to separation problems, i.e.
for β0 = −2. With this high baseline attraction between nodes, we need many (or
large, or both) networks to obtain unbiased estimates.

4. Parametrically bootstrapped confidence intervals: Lastly, we test he consis-
tency of our procedure for obtaining standard error described above in Section A.5.
To that intent, we first compute bootstrapped 95% confidence intervals for the beta
estimates of 100 Monte Carlo experiments for each combination of β parameters.
For each set of 100 experiments, we then compute the ‘coverage’ of confidence in-
tervals, i.e. the fraction of confidence intervals that contain the real β value. If
our bootstrapped confidence intervals are consistent, this fraction is close to and
statistically indistinguishable from .95.

Figure A5 shows that for most β parameter combinations, close to and statisti-
cally indistinguishable from 95% of our bootstrapped confidence intervals contain
the real value of β. Confidence intervals are slightly overconfident (i.e. too small)
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Figure A4: Bias in parameter estimates and the number of independent of spatial
lattice instances.
Note: Resulting from Monte Carlo simulations with the following parameters: 100 iterations;
network size N = 256 (hexagonal structure); burn-in rate of 100; number of instances, β0, and β1 as
shown in graph.

for very small values of beta0. This result is directly related to the (small) biases that
affect our estimates in this corner of the parameter space where separation prob-
lems occur. Statistically, it is not surprising that parametrically bootstrapped con-
fidence intervals for biased estimates are not consistent. However, even for those
cases biases and the resulting coverage gap is relatively small (ca. 90% instead of
95%). Adding the above insight that our estimator is asymptotically consistent,
these results show that the parametric bootstrap presents a practicable way to de-
rive generally consistent confidence intervals.
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Figure A5: Precision of confidence interval coverage: Standard errors and 95%
confidence intervals derived from a parametric bootstrap (Section A.5.
Note: Grey bars denote the 95% confidence interval of the CI coverage estimates. Resulting from
Monte Carlo simulations with the following parameters: 100 iterations; 1024 nodes on a hexagonal
lattice; 1 instance; burn-in rate of 100; β0 and β1 as shown in graph.

C Data

C.1 Historical ethnic map collection

We worked with a team of research assistants to gather ethnographic maps of Eu-
rope from the 19th century to the present, relying on 25 different online and archival
resources. This yielded a total of ca. 350 digitized maps,42 from which we selected
73 maps that we considered the most suitable. Among our suitability criteria were:

1. Maps must depict ethnic settlement areas (as opposed to general maps of race
or religion, or census maps of a group’s population share within administra-
tive units).

2. Maps should depict a snapshot in time close to the year they were published
(as opposed to maps of the distribution of peoples in ancient history).

3. Sufficient level of detail and precision

4. No obvious signs of political bias

42This count is approximate since we digitized many maps on the basis of Library Catalogue
entries which ended up not being maps of ethnic groups in the first place.
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5. Maps cannot be duplicates of other maps (some maps were just slightly al-
tered versions of other maps, published in different outlets)

Figure A6 summarize the ethnic boundaries retrieved from the data (a), the
spatial coverage of overlapping maps (b), their temporal distribution (c), as well
as the correlation of the final edge-level measure of ethnic boundaries over the
main time periods in our analysis (d). Table A2 lists all 73 maps that we have
so far used as source material, along with the relevant metadata. Section C.1.1
shows three examples of maps that were part of our final selection. In Section
C.1.2, we give three examples of maps that did not meet our criteria. Figure A10b
shows a map that was excluded because its depiction of ethnic settlement areas
is too coarse. As a clear example of political bias, Figure A12 shows a map of
Lithuanian settlement areas published by the Lithuanian National Committee in
1918. This map defines a much larger Lithuanian settlement area than any other
map published between 1863 and 1963, and seems to provide justifications of its
territorial claims based on historical kingdoms. Lastly, Figure A11 shows a census
map of Germans in present-day Poland in 1863. Although the map roughly depicts
the settlement areas of Germans, it is too coarse as it aggregates this information
up to the level of administrative units.
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(a) Ethnic boundaries as fraction of maps covering an area, 1836–2010.

(b) Count of maps per area, 1836–2010

(c) Number of maps over time (d) Correlation of ethnic boundary across periods t

Figure A6: Historical ethnic data: Summary
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file name title author map year scale quality source

brl rob 22 Ethnographische Karte der Östereichis-
chen Monarchie

Czoernig, Karl Freiherr
von

1855 1:864,000 5 archive

bnf rob 41
Carte Ethnographique de la Turquie
d’Europe et des États Vassaux Au-
tonomes

Lejean, Guillaume
Marie

1861 1:2,500,000 4 online

rum rob 37 Tableau Ethnographique Erckert, Roderich von 1863 1:5,500,000 5 online

brl rob 32 Völker und Sprachenkarte von Deutsch-
land und den Nachbarländern

D. Reimer 1867 1:3,000,000 5 archive

yun rob 18 Völker- und Sprachen-Karte von Öster-
reich und den Unter-Donau-Ländern

Kiepert, Heinrich von 1869 1:3,000,000 5 online

bnf rob 37
Specialkarte der deutsch-französischen
Grenzländer mit Angabe der Sprach-
grenze (neue berichtigte Ausgabe)

Kiepert, Heinrich von 1870 1:666,666 3 online

yun rob 8 Europe Ethnographic Unknown (Russian au-
thor)

1870 1:10,500,000 4 online

wik aya 1 Ethnic Map of European Russia Rittikh, Aleksandr Fe-
dorovich

1875 1:2,520,000 5 online

uch cam 9
Die Neueste Eintheilung, die Türkischen
Gebiete & die Confessionen in der
Türkei

Petermann, August,
Habenicht, Hermann

1876 1:2,500,000 3 online

yun rob 15 Ethnographische Übersicht des Eu-
ropäischen Orients

Kiepert, Heinrich von 1876 1:3,000,000 4 online

brl rob 16 Ethnographische Karte der Europäis-
chen Türkei Carl Sax 1877 5 archive

uch cam 10 Deutsche & Romanen in Süd-Tirol &
Venetien

Petermann, August 1877 1:740,000 4 online

rum rob 8 Ethnographische Karte von Russland
(Nördliches Blatt)

Rittikh, Aleksandr Fe-
dorovich

1878 1:370,000 5 online

rum rob 18 Ethnographische Karte von Russland
(Südliches Blatt)

Rittikh, Aleksandr Fe-
dorovich

1878 1:370,000 5 online

uch cam 12 Vertheilung der Gross-, Weiss- & Klein-
Russen

Petermann, August 1878 1:370,000 3 online

uch cam 13 Etnograficheskaia Karta Kavkazskago
Kraia

Rittikh, Aleksandr Fe-
dorovich

1878 1:1,080,000 4 online

brl aya 23 Sprachen-Karte von Österreich-Ungarn Franz Ritter v. Le Mon-
nier

1880 1:1,000,000 5 archive

rum rob 11 Europa um 1880 Berghaus, Heinrich 1880 1:15,000,000 3 online

yun rob 17 Sprachen-Karte der westlichen
Kronländer von Oesterreich

Held, F. 1880 1:1,500,000 4 online

rum rob 24 Sprachenkarte, Religionskarte Schweiz Andree, Richard 1881 1:1,480,000 5 online
rum rob 36 Völkerkarte von Russland. Andree, Richard 1881 1:13,300,000 5 online

bnf rob 16
Die Polen in Deutschland:
Nordöstliches Deutschland nebst
Polen. Ethnographische Karte

Geographisches Institut
Weimar

1885 4 online
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https://gallica.bnf.fr/ark:/12148/btv1b53147323f.r=ethnografique?rk=622320;4
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~317020~90085890:Tableau-ethnographique?sort=pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no&qvq=q:%3DPoland%20AND%20pub_date%3D1840...1910%20;sort:pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no;lc:RUMSEY~8~1&mi=1&trs=1702
https://brbl-dl.library.yale.edu/vufind/Record/4167475
https://gallica.bnf.fr/ark:/12148/btv1b102234134/f1.item.r=sprachen
https://brbl-dl.library.yale.edu/vufind/Record/4164840
https://commons.wikimedia.org/wiki/File:Ethnic_Map_of_European_Russia_by_Aleksandr_Rittich-1875.jpg
http://luna.lib.uchicago.edu/luna/servlet/s/f0z18c
https://brbl-dl.library.yale.edu/vufind/Record/4163004
http://luna.lib.uchicago.edu/luna/servlet/s/bekxhm
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~306215~90079058?qvq=w4s%3A%2Fwhat%2FEthnography%25253B%2BNationality%25253B%2BRace%3Bsort%3Apub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no%3Blc%3ARUMSEY~8~1&mi=14&trs=113
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~306215~90079058:Ethnographische-Karte-von-Russland-?sort=pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no&qvq=q:race;sort:pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no;lc:RUMSEY~8~1&mi=45&trs=224
http://luna.lib.uchicago.edu/luna/servlet/s/8lw00h
http://luna.lib.uchicago.edu/luna/servlet/s/39r9rp
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~296929~90068310?qvq=w4s%3A%2Fwhat%2FEthnography%25253B%2BNationality%25253B%2BRace%3Bsort%3Apub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no%3Blc%3ARUMSEY~8~1&mi=64&trs=113
https://brbl-dl.library.yale.edu/vufind/Record/4167476
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~30790~1150721?qvq=w4s%3A%2Fwhat%2FReligious%3Bsort%3Apub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no%3Blc%3ARUMSEY~8~1&mi=159&trs=351
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~30800~1150738:V\unhbox \voidb@x \bgroup \accent 127o\protect \penalty \@M \hskip \z@skip \egroup lkerkarte-von-Russland-?sort=pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no&qvq=q:country%3DRussia%20AND%20pub_date%3D1840...1910%20;sort:pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no;lc:RUMSEY~8~1&mi=173&trs=406
https://gallica.bnf.fr/ark:/12148/btv1b84394002/f1.item.r=ethnographic


file name title author map year scale quality source

brl rob 20 Politisch-Ethnographische Übersicht-
skarte von Bulgarien, Ost-Rumelien

Geographisches Institut
Weimar

1885 1:3,000,000 4 archive

emr rob 2 Ethnographic map of Austria-Hungary
and Romania

Kiepert, Heinrich von 1892 1:3,000,000 4 online

brl rob 30
Völker- und Sprachenkarte von Mit-
teleuropa Karl Peucher 1893 1:6,000,000 4 archive

rum rob 30 Deutsches Reich. Religionskarte. Völk-
erkarte

Diercke, Carl 1896 5 online

rum rob 13 Ethnographic map of Austria-Hungary Andree, Richard 1900 1:4,000,000 4 online

rum rob 14 Ethnographic map of the Balkan Penin-
sula.

Andree, Richard 1900 1:6,000,000 4 online

rum rob 15 Völker u. Sprachenkarten. Europa. Kon-
fessionskarten.

Wagner, Hermann 1902 1:40,000,000 4 online

emr rob 6 Völkerkarte des rumänischen Sprachge-
bietes

Weigand, Gustav 1909 1:340,000 4 online

brl aya 33
Die Sprachgebiete der Schweiz unter
besonderer Berücksichtigung der Ho-
henregionen, nach Walser

Deutsches Ausland-
Institut, Isbert, O.A.,
Strotha, M.K.v

1910 1:300,000 5 archive

loc sim 6
Map of Eastern Turkey in Asia, Syria and
Western Persia (Ethnographical)

Royal Geographical So-
ciety 1910 1:2,000,000 5 online

pol rob 11 Sprach- und Schulkarte Mähren und
Schlesien

Perko, Franz, Perko,
Otto

1910 1:375,000 5 online

brl aya 30 Das Bulgarentum auf der Balkanhal-
binsel im Jahre 1912 Ishirkov, A. 1912 1:1,500,000 5 archive

rum rob 5 Völker- und Sprachenkarte Österreich-
Ungarn

Mayer, Rudolf 1914 1:2,730,000 4 online

brl rob 48 Ethnographische Übersichtskarte von
Osteuropa

Freytag, G. 1916 1:10,000,000 4 archive

bnf rob 4
Carte Ethnographique de l’Europe Cen-
trale et des États Balkaniques. Bolzé, R., Chesneau, M. 1918 1:3,500,000 4 online

brl rob 9

Germany. Ethnographical map, Poland.
Ethnographical map, Northern Italy.
Ethnographical map, South East Europe.
Ethnographical map

Great Britain. General
Staff. Geographical Sec-
tion

1918 1:5,000,000 5 archive

brl rob 10
The Daily Telegraph. Language map of
Eastern Europe Gross, Alexander 1918 1:2,200,000 5 archive

brl rob 46
G. Freytags Völker und Sprachenkarte
von Mittleuropa nebst Italien und der
Balkanhalbinsel

Freytag, G. 1918 1:3,000,000 5 archive

loc sim 3 Carte Ethnographique de la Péninsule
des Balkans

Cvijić, Jovan 1918 1:3,000,000 5 online

loc sim 4 Ethnographic map of the Balkan Penin-
sula

Cvijić, Jovan 1918 1:3,000,000 5 online

brl aya 25 The Question of Thrace. Greeks, Bulgars
and Turks

Mills, J.S., Chrussachi,
M.G.

1919 5 archive
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https://pangea.blog.hu/2019/04/18/romania_reflected_in_ethnic_maps?fbclid=+IwAR36v3CrrOgzH1fLo0C3TiREYShxwiWA2sQxi9Lr4VvAeWNanYrnlKUfhfc
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~281260~90054056:Deutsches-Reich--Religionskarte--Vo?sort=pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no&qvq=q:country%3DGermany%20AND%20pub_date%3D1840...1910%20;sort:pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no;lc:RUMSEY~8~1&mi=31&trs=2208
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~253784~5519218?qvq=w4s%3A%2Fwhat%2FEthnography%25253B%2BNationality%25253B%2BRace%3Bsort%3Apub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no%3Blc%3ARUMSEY~8~1&mi=91&trs=113
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~253814~5519232?qvq=w4s%3A%2Fwhat%2FEthnography%25253B%2BNationality%25253B%2BRace%3Bsort%3Apub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no%3Blc%3ARUMSEY~8~1&mi=92&trs=113
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~267855~90042353?qvq=w4s%3A%2Fwhat%2FEthnography%25253B%2BNationality%25253B%2BRace%3Bsort%3Apub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no%3Blc%3ARUMSEY~8~1&mi=98&trs=113
https://pangea.blog.hu/2019/04/18/romania_reflected_in_ethnic_maps?fbclid=+IwAR36v3CrrOgzH1fLo0C3TiREYShxwiWA2sQxi9Lr4VvAeWNanYrnlKUfhfc
https://www.loc.gov/resource/g7431e.ct002182/?r=0.477,0.747,0.201,0.121,0
https://polona.pl/item/sprach-und-schulkarte-mahren-und-schlesien,NDg4OTAzNzA/0/
https://davidrumsey.georeferencer.com/maps/875747863342/view
https://gallica.bnf.fr/ark:/12148/btv1b53057421z.r=ethnographic?rk=193134;0
https://www.loc.gov/resource/g6801e.ct002083/?r=-0.164,-0.071,1.223,0.801,0
https://www.loc.gov/resource/g6801e.ct001462/?r=0.048,0.437,0.531,0.319,0


file name title author map year scale quality source

brl rob 21
Carte Ethnographique des Régions
Habitées par les Roumains et des
Colonies Étrangeres Qui s’y Trouvent

Demetresco, Atanasiu,
Borcea

1919 1:1,000,000 5 archive

brl rob 19 Carte Ethnographique de l’Albanie
Délegation de la
Colonie Albaise de
Turquie

1920 1:1,000,000 5 archive

loc sim 1 Völker und Staaten in Mitteleuropa Winkler, Wilhelm 1924 1:4,000,000 4 online

brl rob 17
Carte ethnographique de l’Empire Ot-
toman. Faute de données statistiques ex-
actes, depuis la Guerre balkanique [. . . ].

Unknown (French au-
thor)

1925 1:1,000,000 5 archive

brl rob 57 Völkerkarte der Sowjet-Union Klante, M. (Reichsamt
für Landesaufnahme)

1926 1:5,000,000 5 archive

brl rob 51 Volksbodenkarte der Slowakei Isbert, O.A. 1930 1:750,000 5 archive

cic rob 3
Carte ethnographique et linguistique de
l’Europe nouvelle Wehrli, Max 1933 1:10,000,000 4 online

brl rob 56 Rumänien. Volksgruppen

Generalstab des
Heeres, Abteilung
für Kriegskarten u.
Vermessungswesen

1940 1:1,000,000 5 archive

loc sim 7 Die Völker des Donauraumes und der
Balkanhalbinsel

Generalstab des
Heeres, Abteilung
für Kriegskarten u.
Vermessungswesen

1940 1:3,000,000 5 online

brl aya 16 Albanian Minority in Yugoslavia
Great Britain. Foreign
Office. Research De-
partment.

1941 4 archive

brl aya 32

Völkerkarte des Kaukasus. Aufgrund
der vom Bataillon der Waffen-SS z. b.
v. sichergestellten ’Ethnographischen
Karte des Kaukasus.’

Kommission für das
Studium der Völker der
UdSSR und ihrer Nach-
barländer, Reichsamt
für Landesaufnahme.

1942 1:1,000,000 5 archive

nau rob 6 Poland language map

United States. Office
of Strategic Services.
Research and Analysis
Branch

1945 5 online

brl rob 38
Karta Narodov SSSR. Uchebia dlia Sped-
nei Shkoly.

Unknown (Russian au-
thor)

1955 1:5,000,000 5 archive

brl aya 3 Ethnic Map of the Soviet Union

Main Directorate of
Geodesy and Cartog-
raphy, Ministry of
Geology and Mineral
Resources of the USSR

1959 1:5,000,000 5 archive
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https://nla.gov.au/nla.obj-485466365/view


file name title author map year scale quality source

grg guy 1
Atlas Narodov Mira / Geo-referencing
of Ethnic Groups

Bruk, S.I., Apenchenko,
V.S., Digitized by Weid-
mann et al. (2010)

1964 1:5,000,000 4 online

brl aya 10 Map of People of the USSR

Main Directorate of
Geodesy and Cartog-
raphy, Ministry of
Geology and Mineral
Resources of the USSR

1972 1:5,000,000 5 archive

pcl aya 3 Cyprus, Ethnic Distribution U.S. Central Intelligence
Agency 1973 2 online

eth aya 21
Völker und Sprachen Europas unter
besonderer Berücksichtigung der Volks-
gruppen

Straka, Manfred 1978 1:6,000,000 5 online

bav nic 1
Ethnic Groups in Southern Soviet Union
and Neighboring Middle Eastern Coun-
tries

U.S. Central Intelligence
Agency 1986 3 online

sdl aya 1 Map of Slovenian Dialects Logar, Tine, Rigler,
Jakob

1986 4 online

brl aya 6 Ethnic map of the Soviet Union

Main Directorate of
Geodesy and Cartog-
raphy, Ministry of
Geology and Mineral
Resources of the USSR

1988 1:4,000,000 5 archive

eth aya 1
Herrien Europa. Europa de Los Pueblos.
L’Europe de Peuple. Europe of the Peo-
ple

Herreros Agüi, Se-
bastián, Durán Ro-
driguez, Adolfo

1992 1:6,000,000 5 online

pcl aya 8
Ethnolinguistic Groups in the Caucasus
Region

U.S. Central Intelligence
Agency 1995 1:6,750,000 2 online

col aya 16
Ethnic Ukrainians and Russians in the
Caspian-Black Sea Basin Izady, M. 1997 4 online

col aya 1
Ethnolinguistic Groups in the Caucasus
and Vicinity Izady, M. 1999 4 online

col aya 17 Languages of North Africa Izady, M. 2003 4 online
col aya 10 Middle East: Ethnic Groups Izady, M. 2006 4 online
col aya 9 The Levant: Ethnic Composition Izady, M. 2008 5 online

enl guy 1
Ethnologue / World Language Mapping
System. Language Maps. Version 17 SIL International 2014 4 online

dev guy 1 Languages of Europe Unknown 2017 5 online

Table A2: List of 73 ethnographic maps used as source material
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https://icr.ethz.ch/data/greg/
http://legacy.lib.utexas.edu/maps/europe/cyprus_ethnic_1973.jpg 
https://search.library.ethz.ch/primo-explore/fulldisplay?docid=ebi01_prod000434726&context=L&vid=DADS&lang=de_DE&search_scope=default_scope&adaptor=Local%20Search%20Engine&tab=default_tab&query=any,contains,straka%20sprachen&offset=0
https://books.google.ch/books?id=OWeYFGgGGfEC&hl=de&pg=PP1#v=onepage&q&f=false
http://www.dlib.si/details/URN:NBN:SI:IMG-VSVHWWS9/?query=%27source%3dzemljevidi%27&pageSize=25&language=slo&sortDir=DESC&sort=date
http://legacy.lib.utexas.edu/maps/commonwealth/ethnocaucasus.jpg
https://gulf2000.columbia.edu/images/maps/Ukranians_Russians_lg.png
https://gulf2000.columbia.edu/images/maps/Caucasus_and_Vicinity_Ethno_Linguistic_Groups_lg.png
https://gulf2000.columbia.edu/images/maps/North_Africa_Languages_lg.png
https://gulf2000.columbia.edu/images/maps/Mid_East_Ethnic_lg.png
https://gulf2000.columbia.edu/images/maps/Levant_Ethnicity_summary_lg.png
https://www.ethnologue.com/
https://www.deviantart.com/1blomma/art/Languages-Of-Europe-702296501


C.1.1 Examples of maps used as source material

Figure A7: Cvijic, J. (1918). Carte ethnographique de la Péninsule des Balkans.

A20



Figure A8: Reimer, D. (1867). Völker und Sprachenkarte von Deutschland und
den Nachbarländern

Figure A9: Unknown, Russian author (1870). Ethnographic map of Europe
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C.1.2 Examples of unsuitable maps

(a) Higher quality (1855) (b) Lower quality (1916)

Figure A10: Comparing two ethnographic maps of Austria-Hungary. The second
map was excluded due to insufficient level of detail.

Figure A11: Map of Germans in present-day Poland (1863). This map was
excluded because it does not define the settlement area of Germans but instead
shows their population shares within administrative units based on census data.
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(a) Map published by the Lithuanian National Committee (LNC) in 1918

(b) Lithuanian settlements as defined by the LNC compared to 24 other maps (1863-1963)

Figure A12: The LNC map ”claims” a much larger area as Lithuanian territory
than 24 other maps published between 1863 and 1963, most likely due to the
political motivations of the authors. For this reason, we removed this map from
our final selection.
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C.2 Data on self-determination claims: GeoSDM

Following our main analysis, we have examined whether ethnically distinct regions
are indeed more likely to experience secessionist disputes and conflict (see Table 2
and Figure 7). To capture secessionist claims, we draw on new spatial data from
GeoSDM (Schvitz, Germann and Sambanis 2020).

This dataset maps territorial claims made by 466 self-determination movements
worldwide since 1945, as identified by the Self Dermination Movements (SDM)
dataset (Sambanis, Germann and Schädel 2018). While the SDM dataset covers self-
determination claims ranging from regional autonomy to demands for secession or
irredentism, the data we use in this analysis is limited to the latter two claims.
Moreover, our analysis uses a subset of the data that only covers the European
continent.

GeoSDM codes the “dominant” territorial claim as expressed by representatives
of each SDM. In addition, the dataset accounts for changes in territorial claims over
time that may result from changes in international borders or changes in a group’s
stated objectives. Territorial claims are coded based on the detailed background
information on each movement provided by the SDM dataset’s supplementary in-
formation, as well as multiple primary and secondary sources describing the ter-
ritories claimed by separatist movements (e.g. Minahan 1996, 2002; Roth 2015; Mi-
norities at Risk 2019).

Where possible, GeoSDM relies on existing spatial datasets to geocode territo-
rial claims. For example, the bulk of separatist claims concern existing administra-
tive units. In these instances, claim polygons are derived from the Global Admin-
istrative Areas Dataset (GADM 2019). In instances where territorial claims were
based on historical entities or ethnic settlement areas, polygons were derived from
other sources (e.g. Nuessli 2010; Deiwiks, Cederman and Gleditsch 2012; Weid-
mann, Rød and Cederman 2010). In other cases where available GIS data was in-
sufficient, claim polygons were based on digitized maps, which were mostly taken
from Roth (2015). Figure A13 plots secessionist claims in Europe between 1946 and
2012, based on which we coded the secessionist claim outcome variable.
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Figure A13: Secessionist territorial claims (1945-2012), based on GeoSDM

D Robustness checks: Probabilistic Spatial Partition Model

This section presents the design and results of robustness checks highlighted in
Section of the main paper.

D.1 Varying control variables:

We first assess the sensitivity of the results to the choice of our main control vari-
ables. To that intent, we (1) drop all controls from our model except the state border
lags in the lagged dependent variable model and (2) add additional ones. The ad-
ditional variables consist of the following attributes of edges:

• ∆ Longitude, ∆ Latitude: Previous arguments and empirical findings show that
countries tend to have an east-west rather than north-south orientation due to
lower latitudinal than longitudinal environmental variation (Diamond 1997;
Laitin, Moortgat and Robinson 2012). If ethnic geographies follow the same
pattern, the direction of edges may present an omitted variable. To capture
such dynamics we include the distance an edge traverses in each direction in
decimal degrees.

• Population density in 1880 (estimate): The local population density of the area
an edge traverses may comprise another omitted variable. In particular, high-
density regions may feature higher levels of ethnic diversity and smaller coun-
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tries. This may bias our estimates if it renders the correlation between ethnic
boundaries and country borders spurious. We therefore add the level of lo-
cal population density as the average population density in 1880 estimated
for the two vertices an edge connects. Population density estimates are re-
trieved from Goldewijk, Beusen and Janssen (2010) who base their projection
on all available (historical) sub-national census data combined with higher-
level population projections and environmental variables. Though currently
the best available data source, we note that their procedure may add post-
treatment bias to our model.

• Cumulative altitude change: While our main analysis controls for the average al-
titude along an edge, an edge’s ruggedness may be an additional geographic
factor that explains the structure of ethnic and state geographies. In particu-
lar, rugged (i.e. hilly or mountainous) terrain may pose a natural barrier and
thus separate ethnic groups and cause country borders. To assess whether
such a dynamic biases our results, we add the cumulative altitude change
along an edge. It is computed by sampling first a set of points at every 1km
on each edge. The final measure is the sum of absolute difference between
each pair of neighboring points.

• Standard deviation of altitude: Following the same logic we construct an alterna-
tive (and more wildly used) measure of an edge’s ruggedness as the simple
standard deviation of the altitude of the points along an edge.

Following the main analysis, we standardize all additional variables to fall within
the range between 0 and 1 to be able to compare coefficient magnitudes directly
with our main indicator of interest ethnic boundary.

Table A3 presents the results of dropping the main and adding the additional
covariates. We first note that the size of the coefficient of interest, ethnic boundary,
barely changes from the value estimated in the main analysis. This shows that the
observed covariates do not bias the results. If those covariates are, ex ante, the
most probable biasing spatial features, the result furthermore suggests a rather low
likelihood of omitted variable bias affecting the estimates.

In addition, the coefficients of the additional variables exhibit some interest-
ing patterns. First, the estimated coefficient for ∆ Longitude, provides mixed evi-
dence for Diamond (1997) and Laitin, Moortgat and Robinson (2012) in that only
in the lagged dependent variable model are edges with an east-west orientation
are less likely to separate two states. The results also suggest that there are more
border-crossing edges in densely populated areas. Lastly, in the baseline but not
lagged-dependent variable specification, the ruggedness of an edge correlates with
its likelihood to cross and interstate border.
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Table A3: Determinants of state borders in Europe, 1886–2011: Varying control variables

Baseline Lagged Dep. Var. Baseline Lagged Dep. Var.
Constant −2.03∗ −2.69∗ −2.69∗ −1.59∗

[−2.15;−1.93] [−2.94;−2.45] [−3.50;−1.58] [−3.12;−0.56]
Ethnic boundaryt 1.31∗ 1.24∗

[1.19; 1.52] [1.10; 1.44]
Ethnic boundaryt−1 1.07∗ 1.01∗

[0.81; 1.29] [0.77; 1.24]
State bordert−1 1.66∗ 1.65∗

[1.44; 1.90] [1.44; 2.03]
Deep lag 0.75∗ 0.85∗

[0.37; 1.13] [0.42; 1.26]
Edge length −0.33∗ −0.27∗

[−0.51;−0.16] [−0.55;−0.02]
Largest river 0.26∗ 0.14

[0.04; 0.48] [−0.24; 0.42]
Largest watershed 0.72∗ 0.82∗

[0.52; 0.92] [0.51; 1.13]
Elevation mean 0.57 0.19

[−0.78; 1.60] [−1.35; 2.42]
∆ Longitude −0.09 −1.86∗

[−1.17; 0.74] [−2.90;−0.38]
∆ Latitude 0.42 −0.96

[−0.58; 1.25] [−1.96; 0.56]
Population density 1880 1.46∗ −1.00

[0.64; 1.96] [−2.55; 0.39]
Cumulative altitude change −1.20 −0.03

[−2.40; 0.25] [−1.58; 1.34]
Std. dev. altitude 1.35∗ −0.03

[0.35; 2.12] [−1.31; 1.34]

No. of periods 6 5 6 5
No. of vertices 6769 5412 6769 5412
No. of edges 17923 14243 17923 14243
No. of states 189 177 189 177

Notes: Each period t has a length of 25 years. 95% confidence intervals from parametric
bootstrap in parenthesis. ∗ Statistically significant at the 95% level.
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D.2 Varying the temporal structure of the data:

One important design choice at the outset of our main analysis is the choice of the
length of periods that structure the temporal dimension of our data. For our main
analysis, we measure state borders and ethnic geographies every 25 years, starting
in 1886 and ending in 2011 (see Section and Figure 5 in the main paper). While rep-
resenting a middle ground between very short and long periods, the period length
of 25 years is arbitrarily set and our results may differ substantially for differing
period lengths.

This robustness check tests whether this is the case by varying the period in
10-year steps length between 5 and 65 years.43 As in the baseline analysis, each
dataset starts in 1886 and thus exhibits the following temporal structure: t ∈ 1886+

0 p, 1886 + 1 p, ..., 1886 + I p, such that 1886 + I p <= 2019. This setup entails that
our data for p = 35 and p = 45 end in 1991 and 1976, respectively, thus omitting
part of the breakdown of the USSR and former Yugoslavia.

Figure A14: Point estimates of the effect of ethnic boundaries on the partitioning
of Europe into states: Varying the period of the temporal structure of the data
Note: Re-estimates the models in Table 1 varying the length of periods t in years (see Eq. 5 and 6).
95% confidence intervals result from a parametric bootstrap with 120 iterations. Shaded grey areas
show distribution of bootstrapped estimates.

Re-estimating our main specifications for each newly generated dataset yields
results that broadly conform with our main results. Summarized in Figure A14,
the estimates for the baseline (cross-sectional) model show coefficients that remain
stable with the length of periods. The estimate for the 25 year period data is close
to the average of all estimates.

4365 years is the longest period length for which we can split the available data since 1886 into two
periods: 1886–1951 and 1951–2016.
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The results for the lagged dependent variable model are somewhat more var-
ied but consistently yield substantive and statistically significant estimates for the
effect of ethnic boundaries. Upon closer inspection, we note that the downward de-
viations from our main result stem from the two datasets with a period of 35 and
45 year that omit the 1990s, an important period of ethnic secession in the former
Soviet Union and on the Balkans. The results therefore leave us confident that the
temporal structure of our main dataset does not substantially bias our results.

D.3 Varying the spatial lattice:

Similar to the temporal structure of our data, the making of the spatial lattice we
analyze is based on three potentially influential parameters. The first parameter is
the geographic location of the “anchor” of the lattice that determines the location
of all vertices. The second parameter is the spatial resolution of the network. The
third parameter is the spatial structure of the lattice.

Shifting the lattice anchor: The first parameter that determines the spatial make-
up of our baseline lattice consists in the location of the “anchoring” point (in our
case in the utmost south-west of the sampling area) from which the remainder of
the lattice is constructed. We test whether shifting that point – and thereby the rest
of the lattice – slightly44 along the north-south and east-west axes affects the results.

Following this procedure, we construct 100 lattices and recreate the entire dataset
for each. Re-estimating the baseline models for each resulting network gives rise to
a distribution of estimates for the baseline and lagged dependent variable specifi-
cations. Figure A15 shows that our main estimates are well centered at the 77th and
45st percentiles of the respective distributions. This shows that our main results are
not sensitive to the exact location of the anchoring point of our spatial lattice.

Varying lattice resolution: The second parameter that governs the spatial dimen-
sion of our data consists in the length of edges on our lattice. We here present re-
sults from alternative specifications that let this spatial resolution vary between 50
and 200 km, in steps of 25km. Networks with a lower resolution (200km) feature
less vertices and edges but may be able to capture more diffuse spatial patterns, i.e.
capturing effects of ethnic geographies even if they are not precisely marked on a
map or are in fact more gradual than our categorical maps suggest. Graphs with a
higher resolution (25km) are more informative and have more statistical power but
may miss more diffuse spatial effects due to their high level of detail. We therefore

44We shift the lattice by displacing the anchoring point with random draws from a uniform distri-
bution between 1 and 10 decimal degrees in each direction.
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Figure A15: Point estimates of the effect of ethnic boundaries on the partitioning
of Europe into states: Shifting the spatial lattice
Note: Main estimates from Table 1 in red. Distributions result from re-estimating the main models
100 times, each time using data generated for a spatial lattice that has been randomly shifted in
space so as to change the location of nodes while preserving the overall structure of the network.
Each lattice fills the European landmass, but nodes are located at different locations.

create alternative datasets with the alternative spatial resolutions that use the same
spatial raw data to encode the very same variables as our main lattice.

Figure A16 presents the estimates for the effect of ethnic boundaries derived from
the baseline and lagged dependent variable model estimated with the alternative
lattices. The results show that our estimates slightly increase as we decrease the
resolution of our data beyond an edge length of 100km. This suggest that ethnic
geographies can have more diffuse effects that are not always captured by high-
resolution data. Reassuringly, the effects estimated at resolutions lower than 100km
are very similar and statistically indistinguishable from our baseline results.

Varying lattice structure The third parameter that determines the spatial makeup
of our data consists in the structure of the spatial lattice. In particular, the vertices
of the main lattice are the centroids of the tiles of a hexagonal tiling. There are
two other regular tilings, the quadratic and triangular tiling from which we can
generate regular lattices (see Figure A17).45 Together with the hexagonal tiling, the
resulting lattices feature a constant edge length which is only slightly disturbed by
the earth’s surface curvature. However, quadratic and the triangular lattice struc-
tures feature less edges per vertex. They therefore yield a thinner network structure
when we hold the length of edges constant and are, theoretically, less able to cap-
ture spatial dependencies. A fourth possible structure for a planar lattice consists

45As in the hexagonal case, a tiling is transformed into a lattice by connecting the centroid (vertex)
of each tile with the centroids of tiles that share an edge with the first tile.
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Figure A16: Effect of ethnic boundaries on the partitioning of Europe into states at
varying resolutions of the spatial lattice
Note: 95% confidence intervals result from a parametric bootstrap with 120 iterations. Shaded grey
areas show distribution of bootstrapped estimates.

in a set of randomly located vertices transformed to a graph through a simple De-
launay triangulation.46 While the degree of vertices in the random lattice is not
constant, it is on average similar to the hexagonal structure.

In order to test whether our results are robust to these alternative networks
structures, we construct additional lattices with a quadratic, triangular, and ran-
dom structure. For each lattice, we again construct the same set of variables as
in our main analysis and re-estimate our baseline and lagged dependent variable
specification. Figure A18 summarizes the resulting estimates for the effect of ethnic

boundaries. We note that the effect is increasing in the quadratic and triangular struc-
ture, yielding a similar effect as obtained when we decrease the spatial resolution
of the lattice (see above). The random lattice structure yields estimates that are in-
distinguishable from those estimated from the hexagonal structure. In sum, these
results suggests that the hexagonal lattice structure yields if at all conservative es-
timates doe to its increased ability of capturing spatial interdependence.

46Note that the hexagonal lattice corresponds to a Delaunay tesselation but the quadratic and
triangular ones do not. See Figure A17.
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(a) Lattice from quadratic tiling

(b) Lattice from triangular tiling

(c) Lattice from randomly sampled points with Delaunay triangulation

Figure A17: Varying lattice structures
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Figure A18: Effect of ethnic boundaries on the partitioning of Europe into states at
varying spatial lattice structure
Note: 95% confidence intervals result from a parametric bootstrap with 120 iterations. Shaded grey
areas show distribution of bootstrapped estimates.

Figure A19: Uncertainty estimates with varying burn-in rates
Note: 95% confidence intervals result from a parametric bootstrap with 120 iterations an a burn-in
rate as indicated on the x-axis. Shaded grey areas show distribution of bootstrapped estimates.
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D.4 Burn-in rate in parametric bootstrap

We also assess whether the choice of the burn-in period (100 iterations) substan-
tively affects the uncertainty estimates produced by our parametric bootstrap (see
also Appendix Section A.5). Figure A19 plot the confidence intervals and param-
eter distribution retrieved from parametric bootstraps with a burn-in rate varying
between 1 and 1000 iterations. The results show that the choice of the burn-in rate
does not substantively affect the results above a very low burn-in rate of 10 iter-
ations. This result coincides with the stability of the results in most areas of the
parameter space assessed in our Monte Carlo experiments in Appendix Section
B.2.

D.5 Logistic regression with edge-level data

To demonstrate the advantages of the PSPM, we can alternatively model our lattice
data in a straightforward logistic regression setup. In particular and having to as-
sume that edges are independent, we can model the probability pj,k,t that an edge
between nodes j and k crosses a state borders at time t as

log(
pj,k,t

1− pj,k,t
) = β0 + β1 ethnic boundaryj,k,t + γ Xj,k (A15)

and, in the lagged dependent variable specification, as

log(
pj,k,t

1− pj,k,t
) =β0 + β1 ethnic boundaryj,k,t−1 + β2 state borderj,k,t−1+

β3 deep lagj,k + γ Xj,k,
(A16)

These specifications mirror the main specification with the important exception
that we treat edges as fully independent here. While we know that this assump-
tion makes it impossible for the models to generate any meaningful predictions of
country borders,47 we do not know how the assumption affects the inferences we
draw from the data.

The results from estimating Equations (A15) and (A16) are listed in Table A4
and illuminate the effects of the invalid independence assumption. To compare
the results directly with our main estimates we can leverage the fact that the co-
efficients of the PSPM are interpretable in the same way as those from a logistic
regression for “bridge edges” on the lattice, i.e. edges that can change their out-
come irrespective of their neighborhood and are therefore truly independent (see
Appendix Section A.2). Making the comparison for these edges, we immediately

47This is simply because sampling from the above models yields edge-level predictions that do
not partition the vertices of the graph into valid partitions.
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Table A4: Edge level modeling: Logit results

Dependent variable:

Baseline model Lagged dependent variable
(1) (2)

Constant −5.3039∗∗∗ −5.5148∗∗∗
(0.1423) (0.2051)

Ethnic boundaryt 3.0287∗∗∗

(0.0695)

Ethnic boundaryt−1 2.5287∗∗∗

(0.1176)

State bordert−1 4.5940∗∗∗

(0.1068)

Deep lag 1.7714∗∗∗

(0.1405)

Edge length −0.4978∗∗ −0.2672
(0.2449) (0.3287)

River 1.0267∗∗∗ 0.4587∗∗∗

(0.0860) (0.1581)

Watershed 1.1826∗∗∗ 0.6127∗∗∗

(0.1067) (0.1799)

Elevation mean 4.0942∗∗∗ 1.3342∗∗∗

(0.2362) (0.3283)

Observations 17,676 14,148
Log Likelihood -4,503.4300 -1,917.2510
Akaike Inf. Crit. 9,018.8600 3,850.5020

Notes: Each period t has a length of 25 years. Robust standard errors in parenthesis.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

.

note that the β estimates for ethnic boundaries from the logistic regression are ap-
proximately 2.5 times larger than in the baseline and lagged dependent variable
PSPM models. This translates into odds ratios that are 12 times too large. In addi-
tion, we see that the estimates standard errors are significantly smaller than those
yielded by the PSPM. We argue that these divergences are explained by the spatial
interdependence between edge’s outcomes, which are captured by the PSPM.

E Robustness checks: Analysis of secessionist claims and
conflict

This section presents the robustness check for the analysis of secessionist claims
and conflict. The type of the additional analysis partially mirrors the additional
analyses conducted for the analysis of the partitioning of Europe into states.

A35



Full results: Table A5 presents the main results, including reports on all covari-
ates. We note that, in addition to non-coethnic capital, the size of the local population
and the presence of historical precedents seem particularly relevant for explaining
the spatial pattern of secessionism. The remaining covariates yield insignificant re-
sults. It must, however, be noted that the inclusion of non-coethnic capital, the popu-
lation size, and previous borders, are causally posterior to all geophysical variables,
thereby making it impossible to precisely interpret the estimates for these variables’
effects.

Table A5: Ethnic boundaries and the onset of self-determination processes: Full
results

Cox Proportional Hazard Model

Secessionist Claim Secessionist Civil War Secession

(1) (2) (3) (4) (5) (6)

Non-coethnic capital 2.602∗∗∗ 1.736∗∗∗ 2.766∗∗∗ 2.086∗∗∗ 3.918∗∗∗ 2.922∗∗∗

(0.337) (0.381) (0.471) (0.369) (0.609) (0.694)

Pt: Dist. to capital (log) 0.280 −0.063 0.897∗ 0.508 0.080 −0.934∗∗
(0.444) (0.366) (0.517) (0.543) (0.582) (0.380)

Pt: Dist. to border (log) −0.085 −0.232∗∗ 0.174 0.028 0.299∗∗∗ −0.074
(0.136) (0.116) (0.109) (0.151) (0.095) (0.071)

Pt: Population (log) 0.150∗ 0.097∗ 0.334∗∗∗ 0.233∗∗∗ 0.241∗∗∗ 0.174∗∗∗

(0.084) (0.052) (0.066) (0.073) (0.049) (0.044)

Pt: Altitude −0.0004 −0.0003 −0.001∗∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗
(0.0003) (0.0003) (0.001) (0.001) (0.001) (0.001)

Pt: Ruggedness 0.208∗∗∗ 0.228∗∗∗ 0.207∗∗ 0.226∗∗ 0.035 0.200∗∗∗

(0.078) (0.071) (0.085) (0.100) (0.099) (0.058)

Pt-C: River −0.101∗ −0.036 −0.122 −0.061 −0.059 −0.084∗∗
(0.057) (0.072) (0.075) (0.054) (0.050) (0.037)

Pt-C: Deep state lag −1.981∗∗∗ −1.948∗∗ −1.918∗∗ −2.403∗∗ −2.835∗∗∗ −3.335∗∗∗
(0.674) (0.837) (0.804) (0.991) (0.816) (0.928)

Pt-C: Watershed 0.030 −0.019 0.054 −0.005 −0.049 0.027
(0.128) (0.115) (0.077) (0.074) (0.129) (0.087)

Pt-C: Elevation −0.712 −1.910∗∗∗ 1.277 −3.017∗∗ 0.642 −1.761
(0.716) (0.599) (1.145) (1.385) (0.939) (1.519)

Events: 207 207 122 122 153 153
Country-year strata: no yes no yes no yes
Controls: yes yes yes yes yes yes
Observations 61,607 61,607 67,587 67,587 71,851 71,851
R2 0.007 0.005 0.005 0.003 0.007 0.005
Max. Possible R2 0.045 0.031 0.025 0.019 0.029 0.023
Log Likelihood -1,217.990 -826.011 -697.294 -534.679 -781.121 -623.632

Notes: Cox Proportional Hazard models. The unit of analysis is the point-year between 1946 and 2012.
Standard errors clustered on state-segments. Full results with control variables are reported in Table A5.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

.
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Within borders from 1946 only: One important caveat of the main analysis is
that border changes observed during the temporal coverage of the panel, i.e. after
1946, are endogenous to secessionism which is the main object of interest here. Be-
cause secessionism reduces mismatches between ethnic boundaries and state bor-
ders leaving only the “hard” cases with low secession probability in the sample, we
may underestimate the effect of ethnic boundaries on the occurrence of secessionist
dynamics. We test this conjecture by analyzing points only as long as they are situ-
ated in the state they were member of in 1946 and drop all other point-years. Table
A6 presents the respective results. All coefficient increase substantially in size (on
average around 50 percent). This suggests that selection bias in the original anal-
ysis leads us to underestimate the effect of mismatches between state and ethnic
geographies on secessionism.

Table A6: Ethnic boundaries and self-determination: Within 1946 borders only

Cox Proportional Hazard Model

Secessionist Claim Secessionist Civil War Secession

(1) (2) (3) (4) (5) (6)

Non-coethnic capital 2.391∗∗∗ 1.801∗∗∗ 3.281∗∗∗ 2.459∗∗∗ 3.904∗∗∗ 2.922∗∗∗

(0.314) (0.404) (0.510) (0.530) (0.611) (0.694)

Events: 197 197 102 102 153 153
Country-year strata: no yes no yes no yes
Controls: yes yes yes yes yes yes
Observations 55,640 55,640 60,807 60,807 64,905 64,905
R2 0.007 0.005 0.005 0.004 0.008 0.006
Max. Possible R2 0.047 0.033 0.023 0.019 0.032 0.025
Log Likelihood -1,129.301 -804.624 -538.761 -468.544 -780.951 -623.632

Notes: Cox Proportional Hazard models. The unit of analysis is the point-year between 1946 and 2012.
Standard errors clustered on state-segments. Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Using pre-1886 data on ethnic geography: As in the estimation of the PSPM,
our analysis of secessionism may be biased if changes in the ethnic boundaries
are caused by factors that also cause state borders to change thereafter. In or-
der to circumvent this risk, we recur to ethnic geographies measured at the ear-
liest point in our data, in the 50 years prior to 1886. Estimating their effect on
post-1946 secessionim in Table A7 yields estimates of non-coethnic capital that are
marginally smaller than those estimated for time-varying ethnic boundaries but
nevertheless of substantive size. Given the reduced precision of the data, standard
errors slightly increase and render one estimate, the effect of non-coethnic capital

on a points’ “break away” in the baseline specification, statistically insignificant.
However, the results remain largely robust. Together with the overall stability of
ethnic geographies, this suggests that endogenous changes in ethnic geographies
are unlikely to cause the results.
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Table A7: Ethnic boundaries and the onset of self-determination claims, conflict,
and border change: Ethnicity data from before 1886

Cox Proportional Hazard Model

Secessionist Claim Secessionist Civil War Secession

(1) (2) (3) (4) (5) (6)

Non-coethnic1886 capitalt 1.443∗∗ 0.989∗ 2.400∗∗∗ 1.726∗∗∗ 2.933∗∗∗ 1.693∗∗∗

(0.652) (0.595) (0.516) (0.632) (0.580) (0.636)

Events: 207 207 122 122 153 153
Country-year strata: no yes no yes no yes
Controls: yes yes yes yes yes yes
Observations 61,709 61,709 67,677 67,677 71,941 71,941
R2 0.005 0.004 0.004 0.003 0.006 0.005
Max. Possible R2 0.045 0.031 0.025 0.019 0.029 0.023
Log Likelihood -1,278.070 -845.274 -713.677 -542.935 -839.608 -652.928

Notes: Cox Proportional Hazard models. The unit of analysis is the point-year between 1946 and 2012.
Standard errors clustered on state-segments. Full results with control variables are reported in Table A5.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

.

Varying the spatial sampling of points: As in the PSPM analysis (see Section
D.3 above), we vary the spatial sampling of points by (1) shifting points along
the north-south and east-west axes 100 times, (2) varying the spatial resolution
of points between 50 and 200km, and (3) retrieving points from the centroids of
quadratic and triangular tiles, as well as from a spatially random draw. Figure
A20 shows that our main estimates are well centered in the distribution of esti-
mates yielded upon shifting our raw points in space and regenerating the dataset.
Figure A21 demonstrates the robustness of the results, including their uncertainty
estimates, to increasing or decreasing the spatial resolution of our data. Lastly, the
results presented in Figure A22 show that the sampling strategy used for construct-
ing our point-level data has no substantial effect on our results. In all, these results
suggest that our results are robust to changing the three parameters that govern the
spatial structure of our data.
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Figure A20: Estimates of the effect of non-coethnic capitals on secessionism:
Shifting points (unit of analysis)
Note: Main estimates from Table 2 in red. Solid lines denote distribution of main estimates, dotted
lines distributions of the upper and lower bounds of the 95% confidence interval. Distributions
result from re-estimating the main models 100 times, each time using data generated for a spatial
points on a hexagonal lattice that has been randomly shifted in space so as to change the location of
nodes while preserving the overall structure of the network. Each lattice fills the European
landmass, but nodes are located at different locations.
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Figure A21: Estimates of the effect of non-coethnic capitals on secessionism at
varying spatial resolutions lattice

Figure A22: Estimates of the effect of non-coethnic capitals on secessionism with
varying spatial structure of the lattice
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