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Abstract

Borders define states, yet little systematic evidence explains where they
are drawn. Putting current challenges to state borders into perspec-
tive and breaking new methodological ground, this paper analyzes
how ethnic geography and nationalism have shaped European borders
since the 19th century. We argue that nationalism creates pressures to
redraw political borders along ethnic lines, ultimately making states
more congruent with ethnic groups. We introduce a Probabilistic Spa-
tial Partition Model to test this argument, modeling state territories
as partitions of a planar spatial graph. Using new data on Europe’s
ethnic geography since 1855, we find that ethnic boundaries increase
the conditional probability that two locations they separate are, or will
become, divided by a state border. Secession is an important mecha-
nism driving this result. Similar dynamics characterize border change
in Asia but not in Africa and the Americas. Our results highlight the
endogenous formation of nation-states in Europe and beyond.

Keywords: Borders; Ethnicity; Europe; Spatial Partitioning; GIS;
Computational Methods



Borders are constitutive features of the modern state system that define the

size and shape of states and specify the limits of state sovereignty.1 A grow-

ing literature documents borders’ attributes (Simmons and Kenwick 2021)

and consequences (Abramson and Carter 2016; Carter and Goemans 2011;

Simmons 2005; Michalopoulos and Papaioannou 2016). Yet, their origins

remain understudied with much research treating states and their borders

as exogenous. Border formation has however gained renewed relevance as

Russia invaded Ukraine, majorities support territorial revisionism in Hun-

gary, Greece, Bulgaria, and Turkey (Fagan and Poushter 2020), and seces-

sionist challenges in Scotland, Northern Ireland, and Catalonia. Ethno-

nationalist demands to redraw state borders along ethnic lines are central

to all these cases.

Yet, despite their intuitive appeal, explanations that seek borders’ origins

in ethnicity are contested and not systematically tested. Addressing this

gap, we ask whether, how, and to what extent ethnic geography has shaped

Europe’s partitioning into states since the 19th century. Following macro-

sociological theories, we argue that the historical rise of nationalism, “a po-

litical principle which holds that the political and national unit should be

congruent” (Gellner 1983, p. 1), created demand for nation-states. As most

nations are ethnically defined, nationalism prompted popular pressures to

redraw borders along ethnic lines through secessionism, unification, and ir-

1See Sack (1986) on human territoriality more generally.
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redentism (Weiner 1971; Hechter 2000; O’Leary 2001). Of these mechanisms,

secessionism is most common and systematically studied. While the ethno-

political roots of secessionist conflict are well evidenced (e.g. Cederman,

Gleditsch and Buhaug 2013; Germann and Sambanis 2021), some studies of

secessions discount ethnicity and nationalism in favor of pre-existing po-

litical units and power politics (Roeder 2012; Griffiths 2016; Coggins 2014).

We contribute to this debate by integrating secessionist, unificationist, and

irredentist border change into a common analytical framework and by over-

coming previous studies’ problematic reliance on geographically fixed units

of analysis.2

We thus innovate the study of border determinants, which so far lacks

a robust quantitative estimator to test theoretical arguments against po-

tentially confounding alternative hypotheses. Realists argue that borders

emerge along mountains and rivers, facilitating internal power-projection

and effective defense (Morgenthau 1985, also Kitamura and Lagerlöf 2020).

From an institutionalist perspective, borders are coordination devices based

on states’ preferences for territory and stability (Simmons 2005) and of-

ten follow local “focal” lines – rivers, watersheds, or historical precedents

(Abramson and Carter 2016; Carter and Goemans 2011; Goemans 2006; Goe-

mans and Schultz 2017). A third perspective highlights borders’ origins in

ethnic geography. Alesina and Spolaore (1997, 2005) theorize the trade-off

2See, e.g., (Griffiths 2016, ch. 2).
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between economies of scale and costs of ethnic heterogeneity in large states

(see also Friedman 1977; Desmet et al. 2011). We empirically test the effect

of ethnic geography on state borders and provide comprehensive evidence

that accounts for alternative explanations.

To do so, we overcome three challenges of assessing the determinants of

borders and the spatial partitioning they produce. First, border formation

is an intractable problem as infinitely many borders can partition space into

an ex ante unknown number of units. Second, borders entail significant and

complex spatial dependencies as they form contiguous, non-overlapping

units. Third, unbiased estimation of ethnic geography’s effect on borders

requires consideration of confounding geographic features that affect both.

We address these challenges with a new Probabilistic Spatial Partition

Model (PSPM) which allows us to estimate the conditional effect of spatial

features (e.g., ethnic settlement patterns) on the partitioning of geographic

space into non-overlapping units (e.g., states). The model discretizes geo-

graphic space as a planar network of points that encodes the main depen-

dent and independent variables. It makes partitionings tractable, accounts

for spatial dependencies, estimates effects conditional on covariates, and

yields valid uncertainty estimates. Beyond our present use, the PSPM can

be applied to model other partitionings, for example administrative or elec-

toral units. We provide an accompanying open-source R package and code

for handling spatial network data.3.

3Available at github.com/carl-mc/pspm and github.com/
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We use the PSPM to estimate the effect of ethnic geography on state

borders. Our new, time-varying data on ethnic geography predate (chang-

ing) state borders in Europe since 1855. Digitized from 73 historical maps,

the dataset enables us to analyze borders and border change based on pre-

existing ethnic settlement areas. We address omitted variable and reverse

causality bias by pairing a cross-sectional with a lagged dependent-variable

model that captures the effect of ethnic geography on border change.

We find that an ethnic boundary between two locations increases the

probability that they are or will become separated by an international bor-

der by 34 and 17 percentage points, respectively. This finding is robust to

accounting for potentially endogenous changes in ethnic geography, alter-

native measures of ethnic differences, additional controls, and changes to

the spatio-temporal data structure. Additional analyses highlight ethnic se-

cession as a key mechanism: Since 1946, areas home to peripheral ethnic

groups saw secessionist claims, civil wars, and border change 11, 21, and

50 times more often than other areas. Moving beyond Europe, we find that

ethnic boundaries explain border change since the 1960s in Asia but not

elsewhere.

carl-mc/SpatialLattice.
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Nationalism and the shaping of states

We argue that the rise of nationalism created a demand for ethnically homo-

geneous nation-states, which caused an increasing alignment of Europe’s

borders with the underlying ethnic map. This development is part of a

larger process of the “right-peopling” and “right-sizing” of states (O’Leary

2001). The former has received much attention in nationalism studies

evidencing the formation of nations within states through assimilationist

policies and ethnic violence (Weber 1976; White 2004; Bulutgil 2016; Mc-

Namee and Zhang 2019) or local dissimilation processes along state borders

(Sahlins 1989). Yet, an exclusive focus on state-led identity formation that

follows Hobsbawm’s (1990, p. 10) claim that “[n]ations do not make states

and nationalisms but the other way around” neglects parallel changes in

state borders and risks underestimating the full impact of nationalism.4 We

therefore focus on the nationalist right-sizing of states along ethnic lines and

address reverse processes as an empirical challenge.

How did nationalism transform Europe’s borders? We start by defining

ethnic groups as “those human groups that entertain a subjective belief in

common descent” (Weber 1978, pp. 385-98), most frequently distinguished

by their language and religion. Once groups’ members desire to control a

4The two processes are linked as ethnic homogenization often focuses on

contested territories (Bulutgil 2015, 2016; McNamee and Zhang 2019; My-

lonas 2012).
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state, they become ethnic nations, “a community of sentiment which would

adequately manifest itself in a state of its own” (Weber 1978, p. 176). In

consequence, ethno-nationalist ideology requires “that ethnic boundaries

should not cut across political ones, and, in particular, that ethnic bound-

aries within a given state [...] should not separate the power-holders from

the rest” (Gellner 1983, p. 1). Three constellations violate Gellner’s congru-

ence principle, each motivating a specific type of border change.

First and most common are ethnic minorities in a state dominated by a

different group. Such “alien rule” (Hechter 2013) deprives groups of self-

determination and state services that often favor ruling groups (De Luca

et al. 2018). In response, stateless nations may try to attain statehood by

secession. The break-up of empires and multi-ethnic states exemplifies this

process (Beissinger 2002; Germann and Sambanis 2021). With many more

potential ethnic nations than states,5 secessionism is the most common type

of border change (Gellner 1983; Griffiths 2016; Hechter 2000).

Second, ethno-nationalist grievances can also emerge if an ethnic group

is divided by state borders, prompting nationalist calls for unification (Ce-

derman, Rüegger and Schvitz 2022). The promise of benefits from gover-

nance over a larger and ethnically homogeneous territory and population

can help their cause (Alesina and Spolaore 2005). Such efforts sometimes

5Particularly after the German and Italian unifications outside our em-

pirical scope.
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yield the merger of co-ethnic units, as illustrated by 19th-century Germany

and Italy and the more recent reunifications of Vietnam, Yemen, and Ger-

many. Concomitant to the decline of state death since 1945 (Fazal 2004,

2007), ethnic unification is exceedingly rare.

Third, a configuration in which an ethnic group dominates one state

but forms a minority in another can pressure the homeland government to

“liberate” their kin, thus resulting in irredentist nationalism (Weiner 1971;

Siroky and Hale 2017). Named after Italian Veneto and Trento that remained

“unredeemed” after the first wave of Italian unification, the stronger terri-

torial integrity norm has reduced irredentist border change after World War

II (Zacher 2001).

Nationalist ideology equips revisionist activists of all three situations

with powerful arguments that legitimize their claims over ostensibly “in-

divisible” territory and mobilize elites and citizens for their projects (Hroch

1985; Murphy 2002; Goddard 2006). While collective action problems and

resistance by the incumbent state can inhibit actual border change (Hardin

1995), nationalist grievances can lower the bar by making activists less risk

averse (Petersen 2002; Nugent 2020; Germann and Sambanis 2021). Still,

revisionist nationalism is unlikely to succeed without considerable mate-

rial and organizational resources (Tilly 1978). Alternatively, geopolitical

and economic crises create opportunities for change by weakening existing

states, as illustrated by imperial collapse after the World Wars (Abramson
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and Carter 2021; Skocpol 1979). In addition, nationalist “successes” can in-

spire nationalists elsewhere, further reinforcing the spatio-temporal cluster-

ing of border change. Nationalist ideas spread through 19th century Europe

and globally thanks to the “Wilsonian moment” after World War I (Manela

2007).

Yet the diffusion of nationalism beyond Europe did not necessarily pro-

duce ethno-nationalist congruence. The disintegration of the massively

multi-ethnic European colonial empires led to new borders that cut through

ethnic groups and created ethnically diverse independent states (Englebert,

Tarango and Carter 2002). While some activists supported pan-nationalism,

the prevailing elites in the Global South generally subscribed to the legal

norm of uti possidetis. This implied that new borders would follow colonial

administrative borders regardless of their ethnic fit (Ratner 1996). Where

ethnic groups were much smaller than states, as in sub-Saharan Africa, uti

possidetis was particularly influential (Carter and Goemans 2011), a ten-

dency that was further reinforced by a lack of interstate competition over

sparsely populated areas (Herbst 2000) and international norms (Zacher

2001). Even under these conditions, Sub-Sahara Africa was far from im-

mune to ethno-nationalist revisionism, as evidenced by Somali irredentism

and Biafran separatism in Nigeria. In contrast and thanks to the presence

of demographically dominant groups, ethno-nationalism had a larger influ-

ence on border drawing in post-colonial Asia.
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Regardless of the specific historical context, those mobilizing for bor-

der change will base their territorial claims on their – often self-serving –

understandings of ethnic geography. However, even where mobilization

successfully achieves border change, “ethnically pure” borders tend to be

elusive because of overlapping and non-contiguous ethnic settlement pat-

terns (Sambanis and Schulhofer-Wohl 2009). As a result, ethnic geography

determines the approximate location of new borders. In turn, sharp focal

lines such as previous administrative borders, historical precedents, rivers,

or watersheds inform their local settlement (Goemans 2006; Carter and Goe-

mans 2011).

Analyzing the primacy of secession and the global generalizability of the

argument in separate analyses, our main empirical focus is on the overall

impact of ethnic settlement patterns on European state borders:

Hypothesis 1 Ethnic settlement patterns shape state territories such that ethnic

boundaries and state borders become increasingly congruent.

Unit of analysis and data

We test our claims about the effect of ethnic boundaries on state borders us-

ing time-variant data on state borders and ethnic geography in Europe since

1886. This section explains how we go beyond previous studies of border

determinants by modeling the European landmass as a spatial network of

points. We use the network to encode our data and estimate our new Prob-
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abilistic Spatial Partition Model (PSPM) presented subsequently.

Geographic space as a network of points

We model geographic space as a network of points, a move that addresses

limitations of previous analyses of border locations. These have followed

three approaches. First, Goemans (2006) and Carter and Goemans (2011)

show that new borders are frequently drawn along focal lines such as nat-

ural frontiers, administrative borders, or historical precedent. This valu-

able description of border characteristics provides the ground for analyzing

border precedents as influential causes of border stability (Carter and Goe-

mans 2011; Abramson and Carter 2016). Yet, a focus on observed borders

produces limited insights into their causes, since it neglects all potential but

unrealized borders. In addition, a focus on locally aligned features risks

missing factors such as ethnic geography that only determine borders’ ap-

proximate location at a higher geographic level.

A second approach by Kitamura and Lagerlöf (2020) uses grid cells as

seemingly independent units to examine the frequency with which they

have been crossed by state borders. Doing so disregards nonmonotonic spa-

tial dependencies inherent in the outcome of interest. Because borders par-

tition space into contiguous territorial units, they interdependently emerge

in grid cells. For example, a border will cross a string of pairs of neighbor-

ing grid cells, violating the assumption of unit-independence in standard
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regression approaches as the outcome for any unit depends on its relation

to the ensemble of neighboring cells (not) crossed by a border. Classic spatial

error clustering (e.g. Conley 1999) and spatio(-temporal) diffusion models

(Wucherpfennig et al. 2021) rely on a exogeneously imposed spatial con-

nectivity matrix and are thus unable to recover such endogenous spatial

dependency structures.

A third approach compares observed partitionings with simulated ones.

Prominent in the gerrymandering literature (e.g., Fifield et al. 2020), such

comparisons are based on aggregate statistics, as in our example the ethnic

homogeneity of observed and simulated states. This approach yields in-

formation on the likelihood that an observed partitioning could have orig-

inated from the simulated process. Yet, because the observed partitioning

is not modelled directly, such analyses do not produce inferences about the

effects of a given spatial feature on the partitioning, in particular in the pres-

ence of confounders.

In response to these limitations, we introduce a simplified understand-

ing of space as a planar network G of N points. Discretizing space makes

tractable the problem of analyzing the partitioning of a continuous surface,

which otherwise has infinitely many possible outcomes. Coupled with the

partition model introduced below, the network structure of the data allows

us to capture the spatial dependencies that characterize borders. Taking a

network of points guarantees that G’s vertices have unambiguous partition
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memberships. G covers Europe6 as a hexagonal lattice with 1096 nodes and

2905 edges. Its nodes j are connected to their up to six first-degree neighbors

k at a distance of ∼100km (Figure 1a).7

Data on state borders

Our main outcome is the map of states: the partitioning Pt of the lattice Gt

into states in year t. We measure Pt by retrieving the state each vertex be-

longs to between 1886 and 2019 from the CShapes 2.0 dataset (Schvitz et al.

2022). We analyze borders in every 25th year, i.e., in 1886, 1911,..., 2011.8 The

quarter-century intervals are long enough for cumulative border change to

produce meaningful variation yet short enough to capture varying patterns

of border change since 1886.

Figure 1b plots the outcome data in 1886. While we can distinguish

“Spain” from “France,” these labels are, for our purposes, completely inter-

changeable. Because we do not ex ante know the number or names of states,

we are not interested in whether some vertices became part of “France.” In-

stead, we study whether certain vertices together form a contiguous state –

6We avoid state-based definitions and define Europe’s eastern border

from the Bosporus, via the Black Sea, the Carpathian mountain ridge, the

Caspian Sea, and the Ural.
7This minimizes geographic distortion. Appendix D shows robustness

to varying the graph’s location, resolution, and structure.
8Appendix D analyzes alternative temporal structures.
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(a) Baseline lattice

(b) Partitioning into states in 1886. Border-crossing edges in black.

(c) Ethnic boundaries in 1836-1885. Color denotes fraction of maps in which an
edge crosses an ethnic boundary.

Figure 1: Europe as a hexagonal spatial lattice
13



a partition. The set of all partitions defines the partitioning of Europe into

states.

Data on historical ethnic settlement patterns

We collect new data on ethnic settlement areas in Europe since 1855. Our

main independent variable measures whether an edge crosses and ethnic

boundary or not. We construct this measure from 73 historical maps that to-

gether capture changes in ethnic settlement patterns over the past 165 years.

Changes from genocides and population exchanges are well documented,

while assimilation has more gradually altered ethnic geography. Our his-

torical and time-varying data avoid reverse causality that may arise from

backwards-projecting contemporary ethnic data.

Ethnic maps first emerged in the mid-19th century and proliferated due

to at least two factors. First, innovations in statistics and cartography en-

abled the linguistic and religious categorization of local populations. Sec-

ond, the rise of state-driven and peripheral nationalisms created a demand

for maps of ethnic groups (Kertzer and Arel 2002; Hansen 2015). Initial ef-

forts by German and Austrian geographers in the 1840s were followed by

authors from Russia, the Balkans, and other parts of Europe, resulting in a

scientific community dedicated to ethnic cartography.

For the most part, maps were drawn from census data on the town- or

district-level, and defined ethnicity based on native languages (Cadiot 2005;

14



Hansen 2015). The production of ethnic maps was generally viewed as a sci-

entific endeavor, motivated by enlightenment-era ideals of measuring and

classifying the “natural” world (Livingstone and Withers 1999). Cartogra-

phers therefore sought to establish common standards and provided de-

tailed justifications (Hansen 2015).

However, ethnic maps and census data were also used politically, em-

ployed by states and nationalist movements to shape perceptions of na-

tional homelands and support territorial claims (Herb 2002; Anderson

1991).9 This was most evident at the Paris Peace conference of 1919, where

all parties relied on their own maps to support their demands (Palsky 2002).

Yet, the scope for manipulation was limited. Because cartographers largely

relied on similar data and methods, they could not arbitrarily “invent” eth-

nic boundaries without jeopardizing their reputation (Hansen 2015; Herb

2002). Instead, most attempts to manipulate maps and census data in-

volved the subtle use of politically convenient criteria such as the choice

of sources, population thresholds (Hansen 2015), and the underlying list

of ethnic groups (Hirsch 1997; Cadiot 2005).10 While ethnic categorizations

may have additionally affected ethnic consciousness (Kertzer and Arel 2002;

Anderson 1991), such ethnic malleability was restricted too: while uni-

9See Branch (2013) for parallel consequences of mapping states.
10For example, Kertzer and Arel (2002) note that Greek, Serbian and Bul-

garian nationalists used alternative linguistic criteria to justify claims on

parts of Macedonia.
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fying German dialects into one self-conscious group was possible, more

salient and sticky linguistic divides between mutually unintelligible lan-

guages were very difficult, if not impossible, to alter, invent, or make disap-

pear.

As with all data on ethnic demographics, the political importance and

potential manipulation of ethnic maps could bias our analysis. Our empiri-

cal strategy to test for and mitigate such biases consists of five components.

First, we carefully screened our map material. Starting with over 350

maps, we selected 73 maps based on high quality and spatial precision, and

the absence of obvious political bias (Appendix C.1). Drawn by 64 authors

from 18 nationalities, the maps cover various parts of Europe at different

points in time using sometimes diverging categorizations of ethnic groups.

Second, our spatial graph G is coarse with a resolution of 100km and up to

200km in a robustness check. Most differences between and likely manipu-

lations of ethnic maps affect much smaller areas (see Figure 2).

Third, we average ethnic settlement patterns across all maps from a

given period, reducing the impact of potential biases on any one map. Addi-

tionally, we find no “outlier maps” when re-estimating our main models for

each map separately. Fourth, we show that our results are robust to exclu-

sively using pre-1886 ethnic boundaries to explain changes of state borders

between 1886 and 2011. This severely limits potential reverse causality, as

well as strategic map manipulations during the World Wars. Fifth, we em-
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(a) 1878 map of Russians,
Belarussians, and Ukrainians

(b) Detail of the Belarussian-Russian
ethnic boundary, red square in (a)

(c) Ethnic boundaries from (b) and
other maps (1835-1885) overlaid
with graph G

(d) Ethnic boundary1886 measure

(e) Hungarian settlement area from 9 pre-1886
maps overlaid with G

(f) Slovenian settlement area from
8 pre-1886 maps overlaid with G

Figure 2: Constructing ethnic boundary from historical ethnic maps
Note: (a)-(d) show the transfer of ethnic settlement data onto graph G. (e) and (f) show
Hungarian and Slovenian settlement areas from multiple maps.
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ploy linguistic distances and ethno-demographic Austro-Hungarian census

data as two alternative, continuous measures of “ethnic distance” to ad-

dress remaining concerns of political biases. Discussed below, our results

are robust across all tests.

We construct our main independent variable ethnic boundary as the pro-

portion of maps from a given period in which an edge crosses an ethnic

boundary:

ethnic boundaryj,k,t =
1

Mj,k,t

Mj,k,t∑
m=1

1gm,j 6=gm,k
(1)

where j and k are an edge’s constitutive nodes observed in year t. Mj,k,t

denotes the set of maps that cover the geographic location of j and k in

one of the 50 years prior to t. The variable ethnic boundaryj,k,t is the simple

arithmetic mean of the map-level indicators that are 1 if a map m shows

nodes j and k in different ethnic settlement areas and 0 otherwise.11

Modeling and estimation

We start from the intuition that the partitioning of space into states results

from “attractive” and “repulsive” forces active between different locations.

These forces correspond to factors that affect border formation, such as a

river or an ethnic boundary separating two locations. If two points attract

11Where settlement areas overlap, we compute the share of non-mutual

groups in j and k.
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each other, they are likely part of the same state. If pushed apart by repul-

sive forces, they may become divided by a border. Each point is attracted

to or repulsed by multiple neighboring points, but can only be part of one

state. Directly capturing spatial dependence by only allowing for contigu-

ous and non-overlapping state territories, a point’s ultimate state “member-

ship” is therefore the probabilistic result of the interplay of the attraction

and repulsion exerted by and among all its neighbors and their state mem-

berships.

Our Probabilistic Spatial Partition Model (PSPM) captures this logic by

modeling the partitioning of a planar graph. The model allows us to es-

timate the attractive or repulsive forces resulting from attributes of the

graph’s edges. When estimating the effect of ethnic differences on state

borders, we can thus account for covariates that influence ethnic settlement

patterns and state borders. We next present and validate the PSPM and then

introduce our empirical strategy to test our theoretical argument.

Probabilistic Spatial Partition Model

We model state territories as contiguous and mutually exclusive clusters of

nodes (partitions) of graph G introduced above. Our modeling objective is

to estimate the magnitude and uncertainty of the effects of edge-level at-

tributes while accounting for spatial dependencies in the graph. We here

present the models’ fundamentals, explain our approach to estimation and
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uncertainty, and validate the results with Monte Carlo experiments. Ap-

pendix A contains all further details.

The model: We model the distribution over all possible partitionings P of

lattice G as a Boltzmann distribution:

Pr(P = pi) =
e−εi∑|P|
i=1 e

−εi
, (2)

where the realization probability of partitioning pi decreases with its en-

ergy εi. The term energy reflects the origin of the Boltzmann distribution in

modeling the condition of a system in statistical mechanics (e.g., Park and

Newman 2004).12 Because systems typically move towards a low energy,

low-energy partitionings have higher probabilities. Applied to the parti-

tioning of space into states, we can interpret the energy εi as the sum of

inter- and intrastate tensions that result from a given partitioning.

Figure 3 illustrates this intuition for a simple graph of four vertices.

The plot maps five (out of twelve possible) partitionings, with “countries”

shown as nodes’ color and number. Solid edges run within country borders

and dashed ones across them. The top and bottom edges span across the

red boundary between two ethnic groups, while the top and left edges cross

12The PSPM can be reformulated as an Exponential Random Graph

Model, where P (Y = yi) is the probability of the realization of subgraph

yi of lattice G where yi exclusively connects members of the same partition.
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(a) (b) (c) (d) (e)

Figure 3: Illustration of the PSPM
Note: See main text for discussion. For illustrative purposes, we set parameters as
β0 = −1; βethnic boundary = 1, βriver = 0.5. The potential energy of each edge (from top,
clockwise) is therefore .5, -1, 0, and -.5 (Eq. 5).

the blue river. For illustrative purposes, we assume that political tensions

ε result when states are too small (b, d), multi-ethnic (a, c), or divided by

the river (a, e). Intuitively, Eq. 2 holds that partitionings with ubiquitous

tensions on the left have a lower probability than those with less tension

to the right. Note also the spatial consistency of the graph. We cannot, for

example, switch the left edge in (a) from dashed to solid since this would

make the partitioning intransitive.

We assume that a partitioning’s total energy εi is determined by the sum

of realized energies of the edges that connect all first-degree neighbor node

pairs L on the lattice:13

εi =
∑
j,k∈L

εj,k ∗ sj,k, (3)

13More complex total energy functions could account for higher-level pre-

dictors working, for example, at the level of emerging partitions (e.g., their

size) or the partitioning as a whole (e.g., number of partitions or their size

distribution).
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whereby the potential energy εj,k of the edge between nodes j and k is real-

ized if j and k are part of the same partition (sj,k = 1, solid lines in Figure

3) and is not realized if they are part of different partition (sj,k = 0, dotted

lines in Figure 3). Our empirical interest focuses on the determinants of each

edges’ potential energy:

εj,k = β0 + β xj,k, (4)

which defines the potential energy ε of the edge between nodes j and k

as the sum of a constant β0 that captures the baseline repulsion between

nodes and edge-level characteristics xj,k weighted by the parameter vector

β. In our case and as discussed in the next section, xj,k includes the indicator

ethnic boundaryj,k and additional edge-level covariates. While we have man-

ually set the β parameters in Figure 3 for illustrative purposes, our empirical

goal is to estimate them from the observed partitioning of Europe.

Because the realization probability of a partitioning decreases with its

total energy (Eq. 2), coefficient estimates can be interpreted as follows: Vari-

ables associated with a positive estimate exert a repulsive force on nodes and

increase the probability of them ending up in different partitions. Those

with a negative estimate exert an attractive force, decreasing the chance that

a border separates two points.

Applied to Figure 3 where we have manually set βethnic boundary > βriver,

this means that ethnically aligned state territories have the highest proba-

bility (Panels d and e). Borders along the river in Panel (c) have a reduced
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probability. Finally, because of a baseline attraction between nodes (β0 < 0),

partitionings with many small countries have a low likelihood (Panels b and

d).

Because edges’ values of sj,k are interdependent, it is difficult to inter-

pret coefficients directly. This holds except for bridge edges that connect two

otherwise disjoint network parts (i.e., a peninsula with the continent) and

can therefore independently switch sj,k without violating transitivity. For

these edges, we can interpret coefficient estimates as in a logistic regression

model, computing odds ratios, predicted probabilities, and marginal effects

(see also Cranmer and Desmarais 2011, p. 73).

Estimation and uncertainty: We estimate the β-parameters in Eq. (4) us-

ing a maximum composite likelihood approach (Lindsay 1988). Here, the

likelihood function is the product over the conditional probabilities of ver-

tices’ observed partition memberships, defined based on their neighbors’

memberships. We implement a Gibbs sampler that follows this logic to sam-

ple from the set of possible partitionings |PG| of graph G, given edge-level

predictors xi,j and known parameters β. The sampler allows us to derive

standard errors from a parametric bootstrap.14

Validation: We test the validity of inferences drawn from our model in

an extensive series of Monte Carlo experiments presented in detail in Ap-

14See Appendix A.2.
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pendix B. Our estimator is asymptotically unbiased in the size and num-

ber of independent networks across varying β parameter combinations, and

parametric bootstrapping produces consistent frequentist uncertainty esti-

mates. Appendix D.8 compares the PSPM with a benchmark that disregards

spatial dependence, showing that the latter produces upwards-biased and

overconfident estimates.

Empirical strategy

To test our main Hypothesis, we estimate the effect of ethnic geography on

the partitioning of our spatial lattice Gt into states specifying the edge-level

energy function as:

εj,k,t = β0 + β1 ethnic boundaryj,k,t + γ Xj,k, (5)

where β0 is the baseline repulsion between nodes and ethnic boundaryj,k,t

captures whether the nodes of an edge are located in different ethnic set-

tlement areas (Eq. 1 above). To avoid bias from omitted spatial features, Xj,k

must capture factors that cause ethnic as well as state borders. We therefore

include time-invariant indicators for the length of each edge in kilometers,
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the size of the largest river15 and watershed16 crossed by an edge, and the

mean elevation (Hastings et al. 1999) along it. Taken together, these co-

variates capture important geographic causes of ethnic geography and state

borders (e.g., Kitamura and Lagerlöf 2020). We scale all variables to range

between 0 and 1 to ensure coefficients’ comparability.

Our second analysis uses a lagged dependent variable (LDV) model to

test whether ethnic boundaries affect border change such that both become

increasingly congruent and address reverse causality as the main inferential

threat affecting the baseline model. If ethnic settlement patterns results from

identity formation within state borders (e.g., Hobsbawm 1990) the estimate

of β1 in Eq. 5 could be systematically biased. We therefore account for past

borders leaving ethnic boundary to affect only border change:

εj,k,t = β0 + β1 ethnic boundaryj,k,t−1 + β2 state borderj,k,t−1+

β3 deep lagj,k + γ Xj,k,

(6)

where we model edges’ potential energy in period t as depending on eth-

nic and state borders 25 years earlier in t − 1. In other words, to explain

15Based on a river scale in the Natural Earth data: https://www.

naturalearthdata.com/downloads/10m-physical-vectors/

10m-rivers-lake-centerlines/. Appendix D.3 shows robustness to

non-linear river effects.
16We derive an ordinal variable from Pfaffstetter watershed codes

(Lehner, Verdin and Jarvis 2008).
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state borders in 1936, we control for state borders in 1911 and construct

ethnic boundaryj,k,t−1 from ethnic maps drawn between 1860 and 1910. Be-

cause ethnic boundaries are measured in data from the 50 years preceding

the lagged dependent variable (Eq. 1), border change between t − 1 and t

cannot impact ethnic boundaryj,k,t−1. This avoids bias from reverse causal-

ity. Appendix D.1 shows robustness to interacting controls with state bor-

derj,k,t−1 to differentiate between border emergence and persistence and to

modeling duration dynamics.

Furthermore, borders in the deep historical past may have caused ethnic

boundaries and may form precedents for “new” borders (Abramson and

Carter 2016; Simmons 2005). To avoid such omitted variable bias, we add

a “deep lag” of state borders, the share of years in which an edge crosses

a border in AD 1100, 1200, ..., 1600, and 1790.17 Because we lack early-

19th century ethnic maps, we cannot estimate the LDV model for the 1886

outcome data.

We first estimate our baseline and LDV models on the pooled sample of

all periods. In a second step, we estimate separate models for each period to

gauge temporal variation ethnic geography’s effects. Throughout, we use a

parametric bootstrap to derive confidence intervals.18

17Data is from Abramson (2017) and stops in 1790.
18Appendix D.7 shows robustness to varying burn-in rates of the under-

lying Gibbs sampler.
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Results

Overall, we find consistent support for our theoretical argument with a

strong correlation of ethnic boundaries with state borders in the baseline

model. Moreover, we find similarly sized effects in our LDV mode: even

when accounting for current and past political borders, ethnic boundaries

are strongly and positively related to the formation of new borders over the

next 25 years.

Main results: Table 1 presents the main results obtained from estimating

the baseline and LDV models on the pooled data. The findings support our

theoretical argument and corroborate further predictions from the broader

literature. The negative constant shows that the nodes in our lattice are

generally attracted to each other when we set all covariates to zero. This

attraction is mitigated by our independent variables.

First, the coefficient of (lagged) ethnic boundaries is positive: nodes sep-

arated by an ethnic boundary repulse each other and likely become sepa-

rated by state borders. The respective effect is only slightly larger in the

baseline than in the LDV model, which accounts for past borders and their

determinants. The baseline estimates are thus not simply driven by reverse

effects of state borders on ethnic geographies and omitted variables that af-

fect both. Importantly, the effects of ethnic boundaries are sizeable. They are

associated with almost two thirds of the energy attributed to a lagged state
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Table 1: Determinants of state borders in Europe, 1886–2011

1: Baseline 2: Lagged Dep. Var.
Constant −2.50∗ −3.01∗

[−3.04;−1.91] [−3.98;−2.47]
Ethnic boundaryt 1.22∗

[1.06; 1.40]
Ethnic boundaryt−1 1.02∗

[0.79; 1.24]
State bordert−1 1.65∗

[1.46; 1.96]
Deep lag 0.74∗

[0.36; 1.15]
No. of periods 6 5
No. of vertices 6769 5412
No. of edges 17923 14243
No. of states 189 177
Controls yes yes
Notes: Each period t has a length of 25 years. 95% confidence intervals from parametric
bootstrap in parenthesis. ∗ Statistically significant at the 95% level.

border. Consistent with the prevalence of secessionist border change since

1886, we find that ethnic boundaries affect the emergence of new borders

more than the stability of old ones (Appendix D.1).

Consistent with the findings by Abramson and Carter (2016), the LDV

model shows that state borders from between the 10th and 18th century con-

tinue to separate nodes after 1886 conditional on ethnic geography. Shown

in Appendix D.4, estimated effects of natural border determinants support

previous arguments. Large watersheds and rivers, but not high altitudes are

likely to divide locations into different states, in particular at a high spatial

resolution and without conditioning on post-treatment ethnic boundaries

and historical state borders.
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Interpretation of effect sizes: Table 1 says little about the estimated abso-

lute effect of ethnic boundaries on state borders. As discussed above, we

can interpret the coefficients in parallel to those of a logistic regression for

edges that bridge otherwise disjoint parts of the lattice and are therefore in-

dependent. For these bridge edges, the coefficient of ethnic boundary implies

an odds ratio of 3.4 [2.9, 4.0]19 for the baseline model. Holding all covariates

at their median values, an ethnic boundary thus leads to an increase in the

probability of crossing a state border from 11.2 [9.7, 12.4] to 29.9 [27.6, 33.0]

percent. The LDV model yields an odds ratio of 2.8 [2.2, 3.4] and a change in

the border probability from 6.1 [4.6, 7.9] to 15.3 [11.0, 19.4] percent.20 These

substantial effects constitute a lower bound to the effects of ethnic bound-

aries which increase as they cross multiple interdependent edges.

For the more common case of interdependent edges, we use our estimates

to sample 120 partitionings of the type plotted in Figure 4a and compute

predicted border probabilities as the fraction of partitionings in which an

edge crosses a border. The joint effect of all ethnic boundaries can be as-

sessed by sampling two types of partitionings. The first type is sampled

from the observed data in 2011 (Figure 4b). The second, counterfactual type

is sampled assuming that all of Europe belongs to the same ethnic group21

1995% CI in parentheses.
20This change is conditional on no border in t− 1, hence the lower proba-

bility.
21I.e., setting all ethnic boundaries to zero.
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but holding all other covariates at their observed values (4c).

Predicted probabilities based on observed data in 4b overall closely re-

semble Europe’s political map. Portugal is a prominent false negative, likely

due its small size, narrowness, and rivers and watersheds that cross it. In the

Balkans, diffuse border probabilities reflect overlapping ethnic settlement

areas. Lastly, false positives cross Switzerland, a state that defies ethnically

aligned borders. Yet, a comparison to Panel 4c shows that incorporating eth-

nic boundaries greatly improves our prediction, increasing the area under

the ROC curve from 63 to 88 percent.
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(a) One partitioning sampled from observed data (2011),
baseline model

(b) Predicted border probabilities based on 120 partitionings
sampled from observed data (2011), baseline model

(c) Border probabilities predicted without ethnic boundaries,
baseline model

(d) Distribution of effect of ethnic boundaries on edge-level
border probability

Figure 4: Effect of ethnic boundaries on edges’ predicted border probability.
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The difference between border probabilities in Panels 4b and 4c consti-

tutes the joint effect of all observed ethnic boundaries, shown in Panel 4d.

Being larger than the bridge-edge effects discussed above, ethnic bound-

aries increase border probabilities by 34 percentage points in the baseline

model. In the LDV model, border probabilities increase by 17 percentage

points over a relatively small baseline probability of border change. In sum,

these results confirm a substantial effect of ethnic boundaries on the location

of (newly drawn) state borders.

Variation over time: Figure 5 sheds light on temporal dynamics by show-

ing separate estimates for each 25th year since 1886. Consistent with our

argument, the baseline association between state borders and ethnic bound-

aries increases over time. The temporally disaggregated LDV models show

Figure 5: Effect of ethnic boundaries on the partitioning of Europe into
states
Note: 95% CIs and grey areas show the distribution of bootstrapped estimates.
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that ethnic geography affected changes in state borders particularly around

the turn of the 19th century, World War I, and between 1986 and 2011 when

the Soviet Union and Yugoslavia collapsed.22 World War II brought slightly

lesser ethnic alignment of state borders, and borders were stable from 1961

to 1986. In sum, systemic instability comes with nationalist border change

(cf., Skocpol 1979; Abramson and Carter 2021).

Robustness checks

Our robustness checks assess whether the main findings are driven by po-

tentially endogenous changes in ethnic geography, the choice of data on

ethnicity and control variables, or the spatio-temporal data structure. Ap-

pendix D presents all details.

Pre-1886 ethnic boundaries: Political biases may affect in particular eth-

nic data produced during the World Wars. In addition, our results could be

biased by omitted factors that first changed ethnic settlement patterns and,

temporarily lagged, correlated border change. As a remedy, we use ethnic

boundaries observed in the 50 years prior to 1886 as time-invariant predic-

tor. The estimates in Figure 6 show effects of historical ethnic boundaries

that are only marginally smaller than our baseline estimates. We also find an

22Post-Soviet and -Yugoslav borders mostly followed administrative bor-

ders often drawn based on ethnic geography (e.g., Hirsch 2000).
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Figure 6: Effect of pre-1886 ethnic boundaries on the partitioning of Europe
into states
Note: 95% CIs and grey areas show the distribution of bootstrapped estimates.

increasing alignment of state borders to ethnic boundaries in the LDV mod-

els. Reaffirming the absence of reverse causality and providing evidence

against political bias, the LDV results show that pre-1886 ethnic boundaries

affected border change even a century later. These results hold when we

account for subnational regional borders in 1800 and 1900 (Appendix D.3).

Alternative measures of ethnic difference: We further test robustness re-

garding three alternative measures of edge-level ethnic differences (Ap-

pendix D.2). First, estimating our main specification for each ethnic map

yields a smooth estimate distribution without “outlier maps” and evidences

no undue influence of any one map. Second, we inquire whether effects

of ethnic maps on ethnic identities may have caused our results. Such ef-

fects would most likely arise between linguistically close groups, yet our
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estimates increase with the linguistic distance between groups. Third, polit-

ically biased ethnic maps may result from manipulated population thresh-

olds. Using continuous census data on compositional ethnic differences be-

tween districts in pre-WWI Austria-Hungary yields stronger and more pre-

cise results, likely due to more precise measurement. In sum, we find no

evidence that political or other biases from our historical ethnic maps affect

our results.

Control variables: Our main results are insensitive to re-estimating mod-

els without controls or extending them to account for ruggedness, popula-

tion density, the edges’ geographic orientation, and non-linear river effects,

as well as administrative borders in 1800 and 1900.

Variation of the data structure: We find that our results are robust to vary-

ing the length of periods t between 5 and 65 years.23 We also vary the spatial

data structure regarding (1) the graph’s exact location, (2) its spatial resolu-

tion, and (3) its connectivity structure. For each variation, estimates remain

statistically and substantially significant and similar to the baseline results.

As additional evidence against potential bias from ethnic maps that are erro-

neous or manipulated, effects increase with coarser networks in which spa-

tial error becomes less relevant and manipulation less likely.

2365 years is the maximum period length that produces at least two peri-

ods.
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In sum, our robustness checks show that the main results are not due to

either endogenous changes in ethnic boundaries over time or potentially

arbitrary modeling decisions of ours. The consistency of the results with

early and alternative ethnic data as well as coarse spatial networks suggests

the absence of substantive bias from political manipulation of ethnic data.

In the next section, we provide evidence on secessionist claims and conflicts

as an important mechanism through which ethnic geography shapes state

borders in the age of nationalism.

Mechanism: Secessionist claims and conflict

Because there are more potential ethnic nations than realized states, seces-

sionism likely drives much of the border-changing effects of nationalism.

In an auxiliary analysis in Appendix E, we find that ethnically distinct pe-

ripheral areas were more likely experience ethnic secessionism since 1946.

For this analysis, we recur to the vertices of our spatial network as units of

analysis. For each year, we code whether a point became part of a secesson-

ist claim (Germann and Schvitz 2023), was settled by a politically relevant

ethnic group associated with an onset of secessionist civil war (Vogt et al.

2015), and became part of a newly independent state (Schvitz et al. 2022).

We model the effect of co-ethnicity of the point with its state’s capital on

these outcomes using a Cox Proportional Hazard model, which mitigates

the problem of successful secession leading to selection out of the treatment
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Figure 7: Effect of ethnic boundaries on secessionism.
Note: Predictions with 95% CIs based on Models 1, 3, and 5 in Appendix Table A6, setting
covariates to median values.

group.

We find large and statistically significant effects of being ruled from a

non-coethnic capital on demands for and realizations of secession. Over

50 years and holding covariates at their median value, Figure 7 shows that

ethnically distinct regions have a probability of 35 percent to be part of a

claimed, violently pursued (14 percent), or realized border change (41 per-

cent). The respective probabilities for co-ethnic areas are close to zero. While

the break-up of the USSR and Yugoslavia dominate the temporal pattern of

secessions, our results hold when we stratify by country-year. In sum, they

show that ethnic secessions drive the alignment of state borders with the

ethnic map.
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Figure 8: Effect of ethnic boundaries in 1964 on state borders across
continents
Note: 95% CIs and grey areas show the distribution of bootstrapped estimates.

Global comparison

Our findings have so far been limited to 19th and 20th century Europe. We

here analyze their generalizability by comparing the effects of ethnic geog-

raphy on recent borders and border change across continents.

To do so, we create spatial lattices for each continent and use our main

PSPM specifications to estimate the effect of ethnic boundaries on state bor-

ders in 2017. We use the earliest global data on ethnic geography from the

1963 Soviet Atlas Narodov Mira (Weidmann, Rød and Cederman 2010) and

control for 1964 state borders in the LDV model.24

Starting with Africa, the results in Figure 8 support the conventional

wisdom that decolonization and the uti possedetis norm preserved colonial

24Lacking global data, we omit the “deep lag.”
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borders drawn with little reference to ethnic geography (Griffiths 2015; Mi-

chalopoulos and Papaioannou 2016). The baseline coefficient is relatively

small (yet statistically significant, see also Paine, Qiu and Ricart-Huguet

2021) and the LDV result shows no significant effect on border changes

since 1964. Ethnic boundaries have had a more substantive effect on Asian

borders. Though “only” half the size compared to Europe, ethnic bound-

aries significantly correlate with borders in 2017 and with post-1964 border

change, mostly driven by Soviet Republics’ independence. Lastly, we ob-

serve a stronger cross-sectional correlation between ethnic and state bound-

aries in North than in South America. The absence of recent border change

prohibits estimating LDV models. In an auxiliary test in Appendix D.9,

we find that ethnic boundaries have a larger effects on border change in

densely populated regions in Europe and globally, suggesting that the na-

tionalist reshaping of states occurs mostly where territory is of high value

and competed over (cf. Herbst 2000).

In sum, these results yield two insights. First, state borders are cross-

sectionally aligned with ethnic boundaries at a global scale, with states in

Africa showing the least alignment. Second, ethnic boundaries seem to af-

fect border change in Asia and Europe but not elsewhere. Ongoing ethno-

nationalist conflicts from secessionist Kurdistan to border disputes between

India and Pakistan suggest an ongoing risk of ethnic reshaping of Asian

states. In contrast, outright secessionist conflict is rare in Africa where
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the territorial integrity norm is generally upheld (Englebert and Hummel

2005; Zacher 2001), low population densities decrease territorial competi-

tion (Herbst 2000), but ethnic conflict fragments some states internally.

Conclusion

Assessing nationalism’s impact empirically, this study has analyzed

whether, by how much, and how the nationalist principle reshaped Euro-

pean states along ethnic boundaries since 1886. Bringing systematic evi-

dence to bear, we contribute to the literature on state and border formation

which has so far been relatively fragmented as regards the ethnic origins of

the partitioning of geographic space into states.

Theoretically, we have drawn on a rich yet mostly qualitative literature

that highlights the impact of nationalism on international borders through

secession and, less frequently, unification and irredentism. Over time, these

processes gradually aligned state borders with the ethnic map. We have

tested this proposition with new spatial data on ethnic settlement patterns

since 1855 and a new Probabilistic Spatial Partition Model that allows us to

estimate the effect of ethnic geography on the partitioning of Europe into

states.

While developed for this study, the PSPM can be adapted to study other

partitionings such as administrative units or electoral districts. To improve

its flexibility, future developments could focus on supra-edge predictors,
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different samplers, compositional membership outcomes, computational ef-

ficiency, and statistical properties. Lastly, innovative modellers may want

to jointly assess the reciprocal relationship between state borders and ethnic

geography, thus moving beyond the partial effects estimated here.

Our empirical results show that ethnic boundaries substantively affected

borders and border change since 1886. We estimate that an ethnic boundary

between two locations increases the likelihood of an interstate border be-

tween them by 34 percentage points. Conditional on past state borders, eth-

nic boundaries increase border probabilities by 17 percentage points. Sup-

porting the claim that secessionist border change drives the ethnic reshap-

ing of states, we find that peripheral ethnic minorities are at high risk to be

subject to secessionist claims, conflict, and final break away. Our results also

suggest the ethnic alignment of state borders to be ongoing macro-historical

process. The Russian invasion of Ukraine and secessionist demands across

the continent underscore the continuing centrality of nationalist revision-

ism in European politics. Looking beyond Europe, we have found similar

dynamics of ethno-nationalist border change in Asia but less so elsewhere.

In sum, our findings suggest that ethnic geography has an important

and continuing impact on the shape of European states. In consequence,

the common treatment of states (and other political units) as fixed and ex-

ogenous entities comes at the risk of selection and reverse causality biases.

Selection bias might, for example, deflate estimated effects of ethno-political
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exclusion on conflict (Cederman, Gleditsch and Buhaug 2013) if previous

secessions caused lower levels of ethnic exclusion and conflict. Reverse

causality might inflate estimated effects of ethnic diversity on economic

performance (Alesina and Ferrara 2005) if economic development sparked

centripetal and centrifugal nationalism (Gellner 1983, ch. 7), secessions, and

thus lower ethnic diversity. Knowing about units’ origins is therefore an im-

portant prerequisite to inferring the consequences of at least some of their

attributes.

Our analysis of post-1886 Europe being primarily structuralist, we cau-

tion against deterministic extrapolations. While the potential of ethnic cen-

trifugal forces merits full recognition, previous research offers perspectives

on how to contain them through ethnic power-sharing and regional accom-

modation (Cederman, Gleditsch and Buhaug 2013). More radical if perhaps

utopian, dissociating states from nations altogether may succeed in depoliti-

cizing ethnic divides (Mamdani 2020). Internationally, territorial integrity

norms could rein in nationalist excesses (Zacher 2001), even though the re-

cent revival of nationalist forces could endanger such progress.
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Cederman, Lars-Erik, Seraina Rüegger and Guy Schvitz. 2022. “Redemption
through Rebellion: Border Change, Lost Unity and Nationalist Conflict.”
American Journal of Political Science 66:24–42.

Coggins, Bridget. 2014. Power Politics and State Formation in the Twentieth
Century: The Dynamics of Recognition. Cambridge: Cambridge University
Press.

Conley, Timothy G. 1999. “GMM estimation with cross sectional depen-
dence.” Journal of econometrics 92(1):1–45.

Cranmer, Skyler J and Bruce A Desmarais. 2011. “Inferential network analy-
sis with exponential random graph models.” Political analysis 19(1):66–86.

De Luca, Giacomo, Roland Hodler, Paul A Raschky and Michele Valsecchi.
2018. “Ethnic favoritism: An axiom of politics?” Journal of Development
Economics 132:115–129.

Desmet, Klaus, Michel Le Breton, Ignacio Ortuño-Ortı́n and Shlomo We-
ber. 2011. “The stability and breakup of nations: a quantitative analysis.”
Journal of Economic Growth 16(3):183.

Englebert, Pierre and Rebecca Hummel. 2005. “Let’s stick together: Under-
standing Africa’s secessionist deficit.” African Affairs 104(416):399–427.

Englebert, Pierre, Stacy Tarango and Matthew Carter. 2002. “Dismember-
ment and suffocation: A contribution to the debate on African bound-
aries.” Comparative Political Studies 35(10):1093–1118.

Fagan, Moira and Jacob Poushter. 2020. NATO Seen Favorably Across Mem-
ber States. Report Pew Research Center.

Fazal, Tanisha M. 2004. “State death in the international system.” Interna-
tional Organization 58(2):311–344.

Fazal, Tanisha M. 2007. State Death: The Politics and Geography of Conquest,
Occupation, and Annexation. Princeton: Princeton University Press.

44



Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. 2020.
“Automated redistricting simulation using Markov chain Monte Carlo.”
Journal of Computational and Graphical Statistics 29(4):715–728.

Friedman, David. 1977. “A Theory of the Size and Shape of Nations.” Journal
of Political Economy 85(1):59–77.

Gellner, Ernest. 1983. Nations and Nationalism. Ithaca: Cornell University
Press.

Germann, Micha and Guy Schvitz. 2023. “Representing Self-Determination
Claims in Space: The GeoSDM Dataset.” Mimeo, University of Bath.

Germann, Micha and Nicholas Sambanis. 2021. “Political Exclusion, Lost
Autonomy, and Escalating Conflict over Self-Determination.” Interna-
tional Organization 75(1):178–203.

Goddard, Stacie E. 2006. “Uncommon ground: Indivisible territory and the
politics of legitimacy.” International Organization 60(1):35–68.

Goemans, Hein E. 2006. “Bounded communities: territoriality, territorial
attachment, and conflict.” Territoriality and conflict in an era of globalization
pp. 25–61.

Goemans, Hein E and Kenneth A Schultz. 2017. “The politics of territorial
claims: A geospatial approach applied to Africa.” International Organiza-
tion 71(1):31–64.

Griffiths, Ryan D. 2015. “Between Dissolution and Blood: How Adminis-
trative Lines and Categories Shape Secessionist Outcomes.” International
Organization 69(3):731–751.

Griffiths, Ryan D. 2016. The Age of Secession: The International and Domestic
Determinants of State Birth. Cambridge: Cambridge University Press.

Hansen, Jason D. 2015. Mapping the Germans: Statistical Science, Cartography,
and the Visualization of the German Nation, 1848-1914. Oxford Studies in
Modern Europe.

Hardin, Russell. 1995. One For All: the Logic of Group Conflict. Princeton:
Princeton University Press.

45



Hastings, David A, Paula K Dunbar, Gerald M Elphingstone, Mark Bootz,
Hiroshi Murakami, Hiroshi Maruyama, Hiroshi Masaharu, Peter Hol-
land, John Payne, Nevin A. Bryant, Thomas L. Logan, J.-P. Muller, Gunter
Schreier and John S. MacDonald. 1999. “The global land one-kilometer
base elevation (GLOBE) digital elevation model, version 1.0.” National
Oceanic and Atmospheric Administration, National Geophysical Data Center
325:80305–3328.

Hechter, Michael. 2000. Containing Nationalism. Oxford: Oxford University
Press.

Hechter, Michael. 2013. Alien rule. Cambridge: Cambridge University Press.

Herb, Guntram Henrik. 2002. Under the Map of Germany: Nationalism and
propaganda 1918-1945. Routledge.

Herbst, Jeffrey. 2000. States and Power in Africa. Princeton: Princeton Uni-
versity Press.

Hirsch, Francine. 1997. “The Soviet Union as a work-in-progress: ethnogra-
phers and the category nationality in the 1926, 1937, and 1939 censuses.”
Slavic Review 56(2):251–278.

Hirsch, Francine. 2000. “Toward an empire of nations: border-making and
the formation of Soviet national identities.” The Russian Review 59(2):201–
226.

Hobsbawm, Eric J. 1990. Nations and Nationalism Since 1780. Cambridge:
Cambridge University Press.

Hroch, Miroslav. 1985. Social Preconditions of National Revival in Europe: A
Comparative Analysis of the Social Composition of Patriotic Groups among the
Smaller European Nations. Cambridge: Cambridge University Press.

Kertzer, David and Dominique Arel. 2002. Census and identity. In The Poli-
tics of Race, Ethnicity, and Language in National Censuses, ed. Jack Caldwell,
Andrew Cherlin, Tom Fricke, Frances Goldscheider et al. Cambridge:
Cambridge University Press.

Kitamura, Shuhei and Nils-Petter Lagerlöf. 2020. “Geography and state
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A Probabilistic Spatial Partition Model

A.1 A distribution over partitionings

Our model operates on a lattice graph G, typically a planar graph with grid-like
structure that is superimposed over the area of interest. G consists of N nodes and
M edges, where edges connect neighboring nodes.

Our model is based on a probability distribution defined over all contiguous
partitionings of G. A contiguous partitioning is an assignment of G’s nodes into
K ≤ N groups, called partitions, such that any two member nodes of a partition k
are connected on G through a path that only passes through other member nodes
of k. To give an example, consider a simple lattice with four nodes, arranged in a
square, each connected to their two orthogonally adjacent neighbors. There are 12
contiguous partitionings possible on this baseline lattice: One where all nodes are
isolated, 2 partitionings of 2+2, 4 partitionings of 3+1, 4 partitionings of 2+1+1, and
one partitioning where all nodes are in the same partition.

We model the probability distribution over partitionings as

Pr(P = pi) = Z−1e−εi , (A1)

a Boltzman distribution where P is a random variable denoting the partitioning of
G, pi is some realized partitioning with index i, and εi is the ‘energy’ associated with
partitioning i. The term ‘energy’ for ε is owed to the Boltzman distribution’s origin
in statistical mechanics (Park and Newman 2004). Besides the usefulness of having
a name for ε, ε can be intuitively interpreted as ‘political tension’ in the system when
applying the model to political partitionings. Finally, Z is a normalizing sum,

Z =

|P|∑
i=1

e−εi , (A2)

with P being the set of possible contiguous partitionings.
In our model, the partitionings’ total energy εi is the sum of all realized edge-

level energies. Let εj,k represent the energy value of the edge that connects nodes j
and k. Further, let sj,k be a realization variable that takes a value of 1 if nodes j and
k are part of the same partition, and zero otherwise. Then we define

εi =
∑
j,k∈L

εj,k ∗ sj,k, (A3)

where L are the node pairs that are connected by G’s edges.
Distribution (A1) assigns higher probability to partitionings where partition

borders coincide with high-energy edges. This relationship allows us to formu-
late a model where the probability of observing any given partitioning is a function
of edge-level covariates (like observed natural obstacles). We specify a linear rela-
tionship,

εj,k = β xj,k, (A4)

where xj,k is a vector of edge-level covariates and a unit constant, and β is a pa-
rameter vector of corresponding length.
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To illustrate how the edge-level covariates and parameters determine the prob-
ability of different partitionings, let us discuss a simple example. Say we have a
covariate measuring whether an edge crosses a river. If the respective β parameter
is positive, then the presence of rivers will increase the energy of all edges crossing
rivers. As a result, ceteris paribus, partitionings where partition borders run along
rivers are now more probable than other partitionings. Naturally, the same applies
to any covariate measuring any type of distance. For these, positive β parameters
imply that larger distances increase the likelihood of partition boundaries between
nodes, and vice-versa for negative β parameters.

A.2 Sampling from the model

Before we discuss the estimation of our model, it is useful to discuss our approach
to sampling. Note that sampling from the distribution over partitionings directly
is infeasible for non-trivial sizes of G as the number of possible partitionings to
iterate over grows exponentially.To our best knowledge, the exact function that
maps lattices onto the number of possible contiguous partitionings is unknown.
For instance, the number of possible contiguous partitionings of a 3x3 quadratic
lattice is 1434; for a 10x10 quadratic lattice it is approximately 1045 (see Sloane et al.
2003, A145835).

A more practical approach is Gibbs sampling. Specifically, we sample the par-
tition membership of each node in G, conditioned on the partition membership of
all other nodes. A single Gibbs sample is completed once we have iterated over all
nodes in the baseline lattice.

To illustrate our Gibbs sampling approach, it is useful to think of partition mem-
bership not as a node attribute, but as a relational attribute between any two nodes.
To this end, let us slightly rewrite our probabilistic model over partitionings. Let
H be a graph between all N nodes in G. H will have N(N − 1)/2 edges. Each
edge of H is associated with a binary random variable Sj,k that captures whether
nodes j and k are in the same partition (sj,k = 1) or in distinct partitions (sj,k = 0).
Distribution (A1) can then be rewritten as

Pr(S = s) =

{
Z−1 exp

(
−
∑

j,k∈L εj,k ∗ sj,k
)

if s ∈ P

0 otherwise,
(A5)

where P is the set of valid contiguous partitionings on G, and S is a random vector
of all N(N − 1)/2 edge-wise S variables. Assigning a non-zero probability only if
the realized state vector s is in P is necessary because there are many permutations
of s that do not yield valid contiguous partitionings. For one, there are many per-
mutations of s where transitivity is violated, e.g. where node pairs (j, k) and (k, l)
are each assigned to the same partition (sj,k = 1 and sk,l = 1), but node pair (j, l)
is not (sj,l = 0). Moreover, there are many permutations of s where transitivity
holds, but the partitioning is not contiguous. We assign these permutations a zero
probability weight because they are not part of the sampling space of (A1).

We can sample from (A5) using block-wise Gibbs sampling. Specifically, we
sample from the conditional distribution Pr(Sj |S−j), where Sj is a vector of all S
for those edges adjacent to node j, and S−j is a vector of all remaining S. In other
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words, we sample the partition membership of node j conditioned on the partition
memberships between all other nodes. The conditional distribution is given by

Pr(Sj = sj |S−j = s−j) =
Pr(S = s)∑

s
′
j∈ Sj Pr(Sj = s

′
j |S−j = s−j)

=


exp
(
−
∑

j,k∈Nj
εj,k∗sj,k

)
∑

s
′
j
∈ Sj

exp
(
−
∑

j,k∈Nj
εj,k∗s

′
j,k

) if s ∈ P

0 otherwise,

(A6)

where Sj is the set of all possible permutations of sj and Nj is the set of edges ad-
jacent to node j in G. At first sight, expression (A6) seems difficult to sample from,
as it requires us to sum over all 2N−1 permutations of sj . In practice, however, we
only care about permutations that yield a valid contiguous partitioning, of which
there are few. In fact, there are only two types: One where sj is a zero-vector and
node j forms its own partition, and one where node j is part of a partition in its
neighborhood in G. These relevant permutations of sj are very easily identified,
and thus (A6) can be computed rapidly.

A.3 Estimation by Composite Likelihood

We are interested in obtaining an estimate for the parameter vector β. Ideally we
would do so by exact maximum likelihood, i.e. by solving

β̂ = arg max
β

ln L̂(β ; p,X), (A7)

where

ln L̂ = ln Pr(P = p | β,X)

= −(
∑
j,k∈L

xj,kβ ∗ sj,k)− ln(Z). (A8)

p denotes the observed partitioning, and sj,k is a binary scalar indicating whether
nodes j and k are observed to be in the same partition. Unfortunately, computing
(A8) exactly is impossible for non-trivially sized Gs, as we would have to compute
the normalizing sum Z.

Instead, we pursue a maximum composite likelihood approach, where we ap-
proximate the full likelihood using a product over conditionals (Lindsay 1988; Varin,
Reid and Firth 2011). Specifically, we use expression (A6) and estimate β by maxi-
mizing the following log composite likelihood,

ln L̂C =

N∑
j=1

ln Pr(Sj = sj |S−j = s−j). (A9)

This is similar in structure to the pseudolikelihood proposed by Besag (1974), with
the key difference that Besag’s model estimates vertex-level outcomes on a lattice,
whereas we are interested in partition memberships. Though inefficient, maximum
composite likelihood generally yields consistent estimates (Lindsay 1988). How-
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ever, it is important to note that asymptotic theory only ensures consistency as the
number of independent samples approaches infinity, not the number of random
variables in the joint distribution that is approximated. In our case, this means that
consistency is only ensured in the number of independent graphs G, not in the
graph size N (Varin, Reid and Firth 2011). Hence, whether consistency also holds
in N is an empirical question, which we address in Appendix B below.

In order to obtain stable estimates where the likelihood is relatively flat, we
augment (A9) with a penalization parameter σ that nudges our estimate towards
0,Throughout this paper, we set σ = 10. thus obtaining our parameter estimates
from

β̂ = arg max
β

ln L̂C(β ; p,X)− β2

2σ
(A10)

A.4 Standard errors

Because we estimate β by maximizing the (intentionally misspecified) compos-
ite likelihood (A9), we cannot use the observed Fisher information to estimate
var(β̂). One common approach for computing appropriate standard errors for
composite likelihood estimates is to substitute the Fisher information matrix with
the Godambe information matrix (Godambe 1960). However, obtaining unbiased
estimates of the Godambe matrix is difficult without many independent samples
(Varin, Reid and Firth 2011, pp. 29ff). For this reason, we adopt a resampling ap-
proach, relying on a parametric bootstrap algorithm to estimate standard errors
and confidence intervals (e.g., James et al. 2013, pp. 187-190).

Our algorithm consists of three steps. First, we obtain B partitioning samples
from the fitted model using the Gibbs sampling (Section A.2, each with a separate
Gibbs chain. To achieve good mixing, we initialize each chain by assigning each
vertex its own partition and discard the first 100 ‘burn-in’ samples.See Section B.2
for an evaluation of effects of the burn-in rate on parameter estimates. Second, we
refit the model to each of theB partitioning samples, obtainingB parameter vectors
β̂B . Third, we obtain confidence interval estimates for parameter βk by computing
the empirical quantiles over the B βBk samples. See Section B.2 for simulation re-
sults showing unbiased coverage of the resulting confidence intervals.

B Model Evaluation: Monte Carlo Simulations

We conduct Monte Carlo experiments to test the performance of our model and
the Maximum Composite Likelihood estimator estimator. The main experiments
explore potential biases in estimates recovered by the estimator and investigate the
precision of uncertainty estimates while varying the (1) burn in rate of our sampler,
(2) the size of networks, and (3) the number of independent instances. Biases stabi-
lize after a relatively short burn in period and decrease with the size and number of
networks. Biases are mainly concentrated in areas with separation issues. Standard
errors derived from the Hessian of the Maximum Composite Likelihood estimator
are consistent in most cases. Parametric bootstrapping offers an alternative method
to derive uncertainty estimates.
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B.1 Simulation setup

(a) Predictor. (b) Sampled partitioning: β0 = −1;
β1 = 1; burn-in rate of 100

Figure A1: Monte Carlo simulation setup

Our simulation setup is visualized in Figure A1. For every simulation, we con-
struct a set of I instances of graphs G, each consisting of N vertices. Each lattice
covers a quadratic area and exhibits a hexagonal network structure. Each edge is
associated with a value of a single predictor. As shown in Figure A1a, the predictor
x – the experimental equivalent to an ethnic boundary, river, or mountain ridge – is
drawn from a normal distribution with mean 1 (x ∼ N(1, 1)) for the first, third, fifth,
..., column of edges, and from the normal distribution with mean 0 (x ∼ N(0, 1))
for all other columns as well as vertical edges. x are drawn once and stable across
instances of experiments if equally-sized lattices. The differing means combined
with random local variation introduce a ‘typical’ geographic structure similar to,
e.g., mountain ranges.We use our Gibbs sampler to sample the partitioning of G
based on the following edge-level energy function:

εj,k = β0 + β1 x, (A11)

where we experimentally set β0 and β1 to ‘realistic’ values. We let vertices have a
baseline attraction (β0) ranging between -2 and 0, and let the predictor’s repulsion
(β1) range between 0 and 2.

In a last step, we use the sampled partition of G to estimate β̂0 and β̂1. For each
experiment, we vary one set of parameters. For each parameter combination, we
analyze 100 independently sampled networks. Table A1 summarizes the parame-
ters governing each experiment, run on a high-performance server with 40 CPUs
and 1.5TB RAM.

Table A1: Monte Carlo Experiment Parameters

Parameter values:
Experiment Iterations Beta 0 Beta 1 Network size Instances Burn-in rate Std. error

1. Burn-in rate 100 [-2, -1, 0] [0, 1, 2] 1024 1 [1, 5, 10, .., 1000] –
2. Network size 100 [-2, -1, 0] [0, 1, 2] [16, 64, .., 4096] 1 100 –
3. Instances 100 [-2, -1, 0] [0, 1, 2] 256 [1, 2, 4, 8, 16] 100 –
4. Para. bootstrap 100 [-2, -1, 0] [0, 1, 2] 1024 1 100 Bootstrap
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B.2 Simulation results

Following Table A1, we start by examining the upward or downward bias in the
results of our experiments. The bias of an estimated β̂k parameter is defined in
a straightforward manner as β̂k − βk. We examine this bias as a function of the
burn-in rate, the size of graphs, and the number of independent graphs. Lastly, we
examine the quality of confidence intervals derived from a parametric bootstrap.
In sum, the results show that parameter estimate are asymptotically consistent and
that estimate uncertainty is well reflected in the bootstrapped confidence intervals.

1. Burn-in rate: Figure A2 plots the results of experiment 1, examining the rela-
tionship between the burn-in rate of our Gibbs sampler and the bias in parameter
estimates. The graph shows that the bias decreases quickly, approaching 0 only
after 10–50 burn-in periods. In a set of experiments with a high baseline attraction
between nodes (β0 = −2) and no effect of our predictor (β1 = 0), we see that the
decrease in the bias in β̂0 is matched by an increase in the bias in β̂1. This is due
to separation issues in the networks, which cause the two biases being negatively
correlated. Based on these results, we choose as baseline burn-in rate of 100 for all
following experiments and examine the behavior of estimate biases as we vary the
size and number of networks.

Figure A2: Bias in parameter estimates and the burn-in rate.
Note: Resulting from Monte Carlo simulations with the following parameters: 100 iterations; 1024 nodes on a
hexagonal lattice; 1 instance; burn-in rate, β0, and β1 as shown in graph.

2. Network size: Next, we examine whether biases in our estimates decrease
as we increase the size of networks. This is a necessary test as the consistency of
the Maximum Composite Likelihood estimator is only ensured in the number of
independent graphs G, not in the graph size N (see Section A.3 above; Varin, Reid
and Firth 2011). Increasing the size of our experimental graphs in exponential steps
from N = 16 to N = 4096 shows that the estimator is asymptotically consistent. As
plotted in Figure A3 the estimator bias and variance decrease sharply in N and
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approaches 0 for all combinations of beta parameters. This decrease is slowest in
areas where our data is vulnerable to separation problems, i.e. for β0 = −2. With
such high baseline attraction, only very large networks yield unbiased estimates.

Figure A3: Bias in parameter estimates and the size of spatial lattices.
Note: Resulting from Monte Carlo simulations with the following parameters: 100 iterations; 1 instance each;
burn-in rate of 100; network size (hexagonal structure), β0, and β1 as shown in graph.

3. Number of instances: In the next step, we test whether our estimator is
asymptotically consistent in the number of independent instances of graphs G. For
that purpose, we increase the number of instances in exponential steps from 1 to
16. Figure A4 shows that the resulting biases and variance in β̂0 and β̂1 decrease
as our estimator draws on more independent data. We again note that this de-
crease is slowest in areas where our data is vulnerable to separation problems, i.e.
for β0 = −2. With this high baseline attraction between nodes, we need many (or
large, or both) networks to obtain unbiased estimates.

4. Parametrically bootstrapped confidence intervals: Lastly, we test he consis-
tency of our procedure for obtaining standard error described above in Section A.4.
To that intent, we first compute bootstrapped 95% confidence intervals for the beta
estimates of 100 Monte Carlo experiments for each combination of β parameters.
For each set of 100 experiments, we then compute the ‘coverage’ of confidence in-
tervals, i.e. the fraction of confidence intervals that contain the real β value. If
our bootstrapped confidence intervals are consistent, this fraction is close to and
statistically indistinguishable from .95.

Figure A5 shows that for most β parameter combinations, around 95% of our
bootstrapped confidence intervals contain the real value of β. Confidence intervals
are slightly overconfident (i.e. too small) for very small values of beta0. This result
is directly related to the (small) biases that affect our estimates in this corner of the
parameter space where separation problems occur. Statistically, it is not surpris-
ing that parametrically bootstrapped confidence intervals for biased estimates are
not consistent. However, even for those biased cases, the resulting coverage gap is
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Figure A4: Bias in parameter estimates and the number of independent of spatial lattice
instances.
Note: Resulting from Monte Carlo simulations with the following parameters: 100 iterations; network size
N = 256; burn-in rate of 100; number of instances, β0, and β1 as plotted.

Figure A5: Precision of confidence interval coverage: Standard errors and 95% confidence
intervals derived from parametric bootstraps (Section A.4.
Note: Grey bars denote the 95% confidence interval of the CI coverage estimates. Monte Carlo simulations with
100 iterations; 1 instance each; 1024 nodes; burn-in rate of 100; β0 and β1 as plotted.

relatively small (ca. 90% instead of 95%). Adding the above insight that our estima-
tor is asymptotically consistent, these results show that the parametric bootstrap is
able to derive consistent confidence intervals.
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C Data

C.1 Historical ethnic map collection

We worked with a team of research assistants to gather ethnographic maps of Eu-
rope and the Levant from the 19th century to the present, relying on 25 different
online and archival resources. This yielded a total of ca. 350 digital map scans,This
count is approximate since we digitized many maps on the basis of library cata-
logue entries which ended up not being maps of ethnic groups in the first place.
from which we selected 73 maps that we considered the most suitable. Five crite-
ria determined maps’ suitability. (1) Maps must depict ethnic settlement areas (as
opposed to general maps of race or religion, or maps of groups’ population share).
(2) Maps should depict a snapshot in time close to the year they were published
(as opposed to ex-post maps of historical ethnic geography). (3) Maps must have
sufficient level of detail and precision. (4) They should not exhibit obvious signs of
political bias. This led to the exclusion of the map in Figure A6 published by the
Lithuanian National Committee in 1918. Not only is it published by a nationalist
organization but also pictures an obviously inflated settlement area of Lithuanians
if compared to other maps from the same time and area. We also exclude maps
from German nationalist and national socialist Paul Langhans whose geographic
journal was boycotted by geographers of the time for its political biases. We have
not identified any other cases of egregious political biases in our maps. (5) Maps
cannot be duplicates of other maps (some maps were just slightly altered, repub-
lished versions of earlier ones).

Table A2 lists all 73 maps that we use as source material, along with the rele-
vant metadata and Figure A7 summarizes the resulting historical data on ethnicity.
Panel (a) shows the (unstandardized) boundaries across all maps from all years (see
(c) for the temporal distribution), showing a relatively ‘clear’ ethnic geography in
Western Europe and substantial local ethnic diversity across Central and Eastern
Europe.

In Panel (b), we present a systematic analysis of the overlaps between the same
groups’ depicted on different maps. The upper panel compares all maps with each
other, while the lower panel compares all maps with the currently earliest digital
ethnic data of Europe derived from the Soviet Atlas Narodov Mira (ANM; Bruk
and Apenchenko 1964; Weidmann, Rød and Cederman 2010) only. For both com-
parisons, we “standardize” ethnic labels on the maps by linking them to the tree
of languages (Lewis 2009) and only compare groups associated with the same lan-
guage. In both analyses, we find high overlap with maps from the same decade
overlapping to 90% with the ANM and to 80% across all maps. Maps diverge
partially where they disagree on settlement patterns, in particular where popu-
lations are ethnically diverse. They also diverge because of differing definitions of
ethnic groups that lead to imperfect linguistic standardization – i.e. some maps
simply include Bretons in their definition of French and some do not. These uncer-
tainties about the definition and geography of ethnic groups are captured by our
edge-level ethnic boundary measure which averages across all maps from a given
period. Additional robustness checks employing data on linguistic distances and
compositional ethnic census data (D.2), estimating effects separately by map (D.2),
and varying in spatial resolution (D.6) further address potential problems arising
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Figure A6: Lithuanian settlements as defined by the LNC compared to 24 other maps
(1863-1963)

from the ethnic maps.
Lastly, ethnic change leads to increasingly large difference as the temporal dis-

tance between two maps increases. This is visible in Panel (d) which plots the in-
tertemporal correlation of our edge-level ethnic boundary variable and shows clear
breaks in Europe’s ethnic geography after WWI and WWII.

Figure A7 summarize maps temporal distribution (c), as well as the correlation
of the final edge-level measure of ethnic boundaries over the main time periods in
our analysis (d). We include the metadata and images of all digitized maps as well
as examples of discarded ones in the replication files.

Title Year Author Nationality

Ethnographische Karte der Östereichischen Monarchie 1855 Czoernig, Karl Freiherr
von Austrian

Carte Ethnographique de la Turquie d’Europe et des
États Vassaux Autonomes

1861 Lejean, Guillaume
Marie French

Tableau Ethnographique 1863 Erckert, Roderich von German
Völker und Sprachenkarte von Deutschland und den
Nachbarländern

1867 D. Reimer German

Völker- und Sprachen-Karte von Österreich und den
Unter-Donau-Ländern

1869 Kiepert, Heinrich von German

Europe Ethnographic 1870 Unknown (Russian au-
thor) Russian

Specialkarte der deutsch-französischen Grenzländer mit
Angabe der Sprachgrenze (neue berichtigte Ausgabe) 1870 Kiepert, Heinrich von German

Ethnic Map of European Russia 1875 Rittikh, Aleksandr Fe-
dorovich Russian

Die Neueste Eintheilung, die Türkischen Gebiete & die
Confessionen in der Türkei

1876 Petermann, August,
Habenicht, Hermann German

Ethnographische Übersicht des Europäischen Orients 1876 Kiepert, Heinrich von German
Deutsche & Romanen in Süd-Tirol & Venetien 1877 Petermann, August German
Ethnographische Karte der Europäischen Türkei 1877 Carl Sax Austrian
Ethnographische Karte von Russland (Nördliches Blatt) 1878 Rittikh, Aleksandr Fe-

dorovich Russian

Ethnographische Karte von Russland (Südliches Blatt) 1878 Rittikh, Aleksandr Fe-
dorovich Russian

Etnograficheskaia Karta Kavkazskago Kraia 1878 Rittikh, Aleksandr Fe-
dorovich Russian

Vertheilung der Gross-, Weiss- & Klein-Russen 1878 Petermann, August German
Europa um 1880 1880 Berghaus, Heinrich German
Sprachen-Karte der westlichen Kronländer von Oester-
reich

1880 Held, F. Austrian

Sprachen-Karte von Österreich-Ungarn 1880 Franz Ritter v. Le Mon-
nier Austrian

Sprachenkarte, Religionskarte Schweiz 1881 Andree, Richard German
Völkerkarte von Russland. 1881 Andree, Richard German
Die Polen in Deutschland: Nordöstliches Deutschland
nebst Polen. Ethnographische Karte 1885 Geographisches Institut

Weimar German

Politisch-Ethnographische Übersichtskarte von Bulgar-
ien, Ost-Rumelien

1885 Geographisches Institut
Weimar German

Ethnographic map of Austria-Hungary and Romania 1892 Kiepert, Heinrich von German
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Title Year Author Nationality
Völker- und Sprachenkarte von Mitteleuropa 1893 Karl Peucher Austrian
Deutsches Reich. Religionskarte. Völkerkarte 1896 Diercke, Carl German
Ethnographic map of Austria-Hungary 1900 Andree, Richard German
Ethnographic map of the Balkan Peninsula. 1900 Andree, Richard German
Völker u. Sprachenkarten. Europa. Konfessionskarten. 1902 Wagner, Hermann German
Völkerkarte des rumänischen Sprachgebietes 1909 Weigand, Gustav German
Die Sprachgebiete der Schweiz unter besonderer Berück-
sichtigung der Hohenregionen, nach Walser 1910

Deutsches Ausland-
Institut, Isbert, O.A.,
Strotha, M.K.v

German

Map of Eastern Turkey in Asia, Syria and Western Persia
(Ethnographical) 1910 Royal Geographical So-

ciety British

Sprach- und Schulkarte Mähren und Schlesien 1910 Perko, Franz, Perko,
Otto Austrian

Das Bulgarentum auf der Balkanhalbinsel im Jahre 1912 1912 Ishirkov, A. Bulgarian
Ethnographische Übersichtskarte von Osteuropa 1916 Freytag, G. Austrian
Carte Ethnographique de l’Europe Centrale et des États
Balkaniques.

1918 Bolzé, R., Chesneau, M. French

Carte Ethnographique de la Péninsule des Balkans 1918 Cvijić, Jovan Serbian
Ethnographic map of the Balkan Peninsula 1918 Cvijić, Jovan Serbian
G. Freytags Völker und Sprachenkarte von Mittleuropa
nebst Italien und der Balkanhalbinsel

1918 Freytag, G. Austrian
Germany. Ethnographical map, Poland. Ethnographi-
cal map, Northern Italy. Ethnographical map, South East
Europe. Ethnographical map

1918
Great Britain. General
Staff. Geographical Sec-
tion

British

The Daily Telegraph. Language map of Eastern Europe 1918 Gross, Alexander Hungarian
Völker- und Sprachenkarte Österreich-Ungarn 1918 Mayer, Rudolf German
Carte Ethnographique des Régions Habitées par les
Roumains et des Colonies Étrangeres Qui s’y Trouvent

1919 Demetresco, Atanasiu,
Borcea Romanian

The Question of Thrace. Greeks, Bulgars and Turks 1919 Mills, J.S., Chrussachi,
M.G. British, Greek

Carte Ethnographique de l’Albanie 1920
Délegation de la
Colonie Albaise de
Turquie

Albanian

Völker und Staaten in Mitteleuropa 1924 Winkler, Wilhelm Austrian
Carte ethnographique de l’Empire Ottoman. Faute de
données statistiques exactes, depuis la Guerre balka-
nique [. . . ].

1925 Unknown (French au-
thor) French

Volksbodenkarte der Slowakei 1930 Isbert, O.A. German
Carte ethnographique et linguistique de l’Europe nou-
velle

1933 Wehrli, Max Swiss

Völkerkarte der Sowjet-Union 1938 Klante, M. (Reichsamt
für Landesaufnahme) German

Die Völker des Donauraumes und der Balkanhalbinsel 1940

Generalstab des
Heeres, Abteilung
für Kriegskarten u.
Vermessungswesen

German

Rumänien. Volksgruppen 1940

Generalstab des
Heeres, Abteilung
für Kriegskarten u.
Vermessungswesen

German

Albanian Minority in Yugoslavia 1941
Great Britain. Foreign
Office. Research De-
partment.

British

Völkerkarte des Kaukasus. Aufgrund der vom Bataillon
der Waffen-SS z. b. v. sichergestellten ’Ethnographischen
Karte des Kaukasus.’

1942

Kommission für das
Studium der Völker der
UdSSR und ihrer Nach-
barländer, Reichsamt
für Landesaufnahme.

German

Poland language map 1945
United States. Office
of Strategic Services.
Research and Analysis
Branch

USA

Karta Narodov SSSR. Uchebia dlia Spednei Shkoly. 1955 Unknown (Russian au-
thor) Russian

Ethnic Map of the Soviet Union 1959

Main Directorate of
Geodesy and Cartog-
raphy, Ministry of
Geology and Mineral
Resources of the USSR

Russian

Atlas Narodov Mira / Geo-referencing of Ethnic Groups 1964
Bruk, S.I., Apenchenko,
V.S., Digitized by Weid-
mann et al. (2010)

NA

Map of People of the USSR 1972

Main Directorate of
Geodesy and Cartog-
raphy, Ministry of
Geology and Mineral
Resources of the USSR

Russian
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Title Year Author Nationality

Cyprus, Ethnic Distribution 1973 U.S. Central Intelligence
Agency USA

Völker und Sprachen Europas unter besonderer Berück-
sichtigung der Volksgruppen 1978 Straka, Manfred Austrian

Ethnic Groups in Southern Soviet Union and Neighbor-
ing Middle Eastern Countries 1986 U.S. Central Intelligence

Agency USA

Map of Slovenian Dialects 1986 Logar, Tine, Rigler,
Jakob Slovenian

Ethnic map of the Soviet Union 1988

Main Directorate of
Geodesy and Cartog-
raphy, Ministry of
Geology and Mineral
Resources of the USSR

Russian

Herrien Europa. Europa de Los Pueblos. L’Europe de
Peuple. Europe of the People 1992

Herreros Agüi, Se-
bastián, Durán Ro-
driguez, Adolfo

Spanish

Ethnolinguistic Groups in the Caucasus Region 1995 U.S. Central Intelligence
Agency USA

The Levant: Ethnic Composition 2009 Izady, M. Belgian
Languages of North Africa 2013 Izady, M. Belgian
Ethnolinguistic Groups in the Caucasus and Vicinity 2014 Izady, M. Belgian
Ethnologue / World Language Mapping System. Lan-
guage Maps. Version 17 2014 SIL International USA
Ethnic Ukrainians and Russians in the Caspian-Black Sea
Basin 2017 Izady, M. Belgian
Languages of Europe 2017 Unknown
Middle East: Ethnic Groups 2020 Izady, M. Belgian

Table A2: List of 73 ethnographic maps used as source material
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(a) Ethnic boundaries as fraction of maps covering an area, 1836–2010.

(b) Systematic comparison of ethnic settlement patterns across maps.

(c) Number of maps over time (d) Correlation of ethnic boundary across periods t

Figure A7: Historical ethnic data: Summary
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C.2 Data on self-determination claims: GeoSDM

To capture secessionist claims, we draw on new spatial data from GeoSDM (?).
This dataset maps territorial claims made by 466 self-determination movements
worldwide since 1945, as identified by the Self Dermination Movements (SDM)
dataset (Sambanis, Germann and Schädel 2018). Our analysis is limited to seces-
sionist claims in Europe, a subset of the full GeoSDM data.

GeoSDM codes the “dominant” territorial claim as expressed by representatives
of each SDM. In addition, the dataset accounts for changes in territorial claims over
time that may result from changes in international borders or changes in a group’s
stated objectives. Territorial claims are coded based on the detailed background in-
formation on each movement provided by the SDM dataset’s supplementary infor-
mation, as well as multiple primary and secondary sources describing the territo-
ries claimed by separatist movements (e.g. Minahan 1996, 2002; Roth 2015). Where
possible, GeoSDM relies on existing spatial datasets to geocode territorial claims
(e.g GADM 2019; Weidmann, Rød and Cederman 2010). Where available GIS data
was insufficient, claim polygons were based on digitized maps, mostly taken from
Roth (2015).

D Robustness checks: Probabilistic Spatial Partition Model

This section presents the design and results of robustness checks of the paper’s
main analysis.

D.1 Border emergence vs. persistence and duration dynamics

Drawing on studies of temporal dynamics in binary time-series-cross-sectional data,
we here assess (1) differential effects of ethnic boundaries on border emergence
and persistence and (2) potential bias from unmodelled temporal dynamics in the
lagged dependent variable specification.

Because processes of border emergence differ from those of border persistence,
we test the assumption implicit in the lagged dependent variable model that eth-
nic boundaries have similar effects on both. Discussed by Beck et al. (2001) in
their treatment of restricted transition Probit models, we can do so by interacting
all variables with the lagged dependent variable. Beyond testing whether ethnic
boundaries similarly affect border emergence and persistence, the difference be-
tween their effect on both processes tests whether ethnic secession (newly emerging
borders) or unification (disappearance of old borders) drive the results. Irredentism
features both types of border change in parallel. Table A3 present the results, first
introducing only interactions of with the control variables in Model 1, then only in-
teracting ethnic boundaries with lagged state borders, and finally showing the fully
specified model. The results in 1 show that our main estimate of ethnic boundaries
is if at all downward biased by the exclusion of controls interacted with the state
border lag. Consistent with Model 2, Model 3 shows that ethnic boundaries’ effects
on the emergence of new borders (1.35 [1.07, 1.71]) is more than twice as large as
that on the persistence of old borders (0.53 [-0.07, 1.10], p < .1), with the differ-
ence amounting to -0.82 [-1.45, -0.18]. The results thus show that secessions and the
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creation of new borders substantively but not exclusively drive the effect of ethnic
boundaries in the lagged dependent variable model.

Table A3: Border emergence, stability, and duration

(1) (2) (3) (4) (5)
Constant −2.87∗ −3.13∗ −2.96∗ −1.80∗ −1.67∗

[−3.80;−2.13] [−3.94;−2.39] [−3.88;−2.11] [−2.64;−0.86] [−2.72;−0.82]
State bordert−1 (SB) 0.79 2.12∗ 1.09∗ 0.62∗ −0.03

[−0.22; 2.12] [1.71; 2.53] [0.09; 2.62] [0.08; 1.21] [−1.05; 1.60]
Ethnic boundaryt−1 (EB) 1.11∗ 1.34∗ 1.35∗ 0.95∗ 1.27∗

[0.89; 1.32] [0.97; 1.60] [1.07; 1.71] [0.69; 1.28] [0.99; 1.65]
EBt−1 × SBt−1 −0.98∗ −0.82∗ −0.82∗

[−1.54;−0.28] [−1.45;−0.18] [−1.53;−0.17]

No. of periods 5 5 5 5 5
No. of vertices 5412 5412 5412 5412 5412
No. of edges 14243 14243 14243 14243 14243
No. of states 177 177 177 177 177
Controls yes yes yes yes yes
SBt−1 × controls yes no yes no yes
Cubic duration no no no yes yes
SBt−1 × cub. dur. no no no yes yes
Notes: Each period t has a length of 25 years. 95% confidence intervals from parametric
bootstrap in parenthesis. ∗ Statistically significant at the 95% level.

A second addition to the main lagged dependent variable specification ad-
dresses concerns that unmodelled duration dynamics might bias the results (Beck,
Katz and Tucker 1998). First, since borders’ stability increases and their chance of
reemergence decreases with time, our outcome partitioning in t is likely dependent
on the outcome in all previous periods. Second, the duration of the presence or
absence of a border might directly affect ethnic geography: places that have been
located in the same state for a long time are more likely to be the same ethnic set-
tlement area than places that until recently have been separated by a state border.
This may bias our estimates upwards. In order to control for such temporal dy-
namics, we follow Carter and Signorino (2010) and construct an edge-level cubic
polynomial of the time since an edge has attained its border-crossing status (0/1)
observed in t−1.To that intent, we combine our 25-yearly edge-level cshapes-based
variable with the pre-1790 variables that are coded based on Abramson (2017). To
account for differing duration dependence of borders and non-borders, we then
interact the resulting three polynomial terms with edges’ border-crossing status in
t − 1. As Model 4 in Table A3 shows, doing so does not substantively affect the
estimated effect of ethnic boundaries. Model 5 lastly adds the duration controls to
Model 3, showing again stable estimates. In sum, this suggests that the effects of
ethnic boundaries are duration independent.

D.2 Varying measures of geospatial ethnic difference

Effects by ethnic map:

To gauge whether the results are driven by a (small) set of potentially biased maps,
we re-estimate the main specifications separately for each map, using only data on
ethnic geography from that map. We only include periods t observed after the cre-
ation date of a map. Naturally, as maps are of different size and cover different
areas, not all of them yield positive and statistically significant estimates. Yet, the
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Figure A8: Effect of ethnic boundaries on the partitioning of Europe into states, estimated
separately for each ethnic map
Note: Pooled sample. Darker coefficients are based on maps that cover larger areas of our spatial graph. 95% CIs
show the distribution of bootstrapped estimates. Large coefficients to the left of each plot show the
size-weighted average estimate across all maps with 95% CI.

distributions plotted in Figure A8 show that only a quarter of all maps yields es-
timates below 0,These estimates originate from small maps and are all statistically
insignificant. that all large maps feature positive and significant estimates and that
the median map yields estimates that is similar to our main estimates. We find no
sign of undue influence exerted by a few, potentially biased, “outlier maps.”

Linguistic distance:

We test whether linguistic distances as a continuous measure of ethnic difference
affect border probabilities in our spatial graph. To that intent, we manually encode
the language(s) associated with the ethnic groups depicted on each map in our
map collection. On the basis and following Fearon (2003), we use this information
to compute, for every edge in the graph, the linguistic distance it traverses on the
philogenetic tree of all known languages (Lewis 2009). We compute the distance
between two languages L1 and L2 as the fraction of their paths to the linguistic tree
root they share:

DL1,L,2 = 1−
(

2d(w(L1, .., O) ∩ w(L2, .., O))

d(w(L1, .., O)) + d(w(L2, .., O))

)δ
,

where d(w(L1, .., O)) is the length of L1’s path to the origin and d(w(L1, .., O) ∩
w(L2, .., O)) is the length of the paths’ intersection. δ is an exponent to discount
distances further away from the root of the tree and is set to .5 (Fearon 2003).Where
vertices are located in overlapping settlement areas, we take, for each group of
a vertex, the minimum distance to the other vertex’ groups and average across
groups. This yields an edge-level linguistic distance measure that is bounded be-
tween 0 (same groups) and 1 (e.g., Magyar-German). For further analysis of poten-
tially non-linear effects, we cut this measure into four bins of roughly equal size:
[0], (0,.25], (.25,.5], (.5,1], containing (in 1886) 1640, 482, 464, and 461 edges, respec-
tively.
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Figure A9: Effect of linguistic distances on the partitioning of Europe into states
Note: Pooled sample. 95% CIs and grey areas show the distribution of bootstrapped estimates.

With these variables, we estimate partition models that substitute our main eth-
nic boundary (1) with the edge-level linguistic distance and (2) the three positive dis-
tance factors (0 being the reference category). We estimate the baseline and lagged
dependent variable models using both, time-varying ethno-linguistic data, as well
as data observed only before 1886. The results in Figure A9 show that linguistic
distances exert a substantive effect on edges’ border-crossing probability, which
is similar in size to the main estimates. Importantly, effects are stronger for larger
linguistic distances. This is consistent with states’ inability to overcome ethnic divi-
sions through assimilation in such cases. This finding also provides strong evidence
that our findings are not biased by effects of ethnic maps as instigators of common
ethnicity. Such bias could arise where ethnic consciousness and subsequent polit-
ical strife for nationhood originated primarily from one or multiple ethnic maps.
While maps were potentially influential in such ways, they will not have produced
large linguistic differences such as those between Hungarians and Rumanians (1),
Germans and French (.75), or Poles and Czechs (.57) from scratch. The findings
thus show that such effects of ethnic maps do not drive our results.

Using Austro-Hungarian census data from 1900 and 1910:

In order to assess the importance of (1) measurement error and (2) potential polit-
ical biases in the historical maps of ethnic groups, we replicate our analysis using
district-level data from the pre-WWI 1900 and 1910 censuses in Austria-Hungary.Available
at: https://alex.onb.ac.at. District shapefiles from: MPIDR and CGG (2012)
The census data records the shares of the main ethnic groupsGermans, Czechs (Bo-
hemians & Moravians), Polish, Ruthenian, Slovenes, Serbo-Croats, Italians, Ro-
manians, and Hungarians in 508 districts. We first construct a spatial graph by
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Figure A10: Point estimates of the effect of ethnic boundary measures from the 1900 and
1910 census data in Austria-Hungary
Note: 95% CIs and estimate distributions result from a parametric bootstrap with 120 iterations.

connecting districts’ centroids via a Delaunay triangulation. We then compute,
for each edge, three measures of ethnic difference between two districts A and
B: (1) our baseline ethnic boundary measure, computed from maps produced be-
tween 1861 and 1910; (2) the average difference between the census shares of each
district’s plurality group and its share in the other district (plurality difference) and
(3) the Hellinger distance between the districts’ ethnic composition.Computed as

H(A,B) = 1√
2

√∑G
g=1(
√
pg,A −

√
pg,B)2, where pg,A and pg,B denote the shares of

group g in districts A and B, respectively. The latter is a metric bounded between
0 and 1 that makes use of the full information while not being influenced by ir-
relevant and absent groups (Hellinger 1909). We use these data to re-estimate our
baseline and lagged dependent variable models for the years 1911–2011 and 1936–
2011, respectively. In order to control for potential effects of regional borders on
the census and future state borders, we add a dummy for whether two districts are
separated by a “Landesgrenze” – borders at the first administrative level – within
the Austro-Hungarian empire.

The results in Figure A10 indicate that our main results are, if at all, downward
biased. All models indicate significant and sizeable effects of ethnic differences on
edges’ border probability with no detectable difference between variables derived
from the 1900 and 1910 census data. Yet, the measure of differing plurality group
shares as well as the Hellinger distance yield significantly larger point estimates
while operating on the same 0 to 1 scale as the ethnic boundary indicator. That
suggests that measurement error in our maps – most likely from the categorical
depiction of continuous ethnic geography – exerts attenuation bias. With that, the
result also provides strong evidence against the argument that our findings are
caused by ethnic maps that have been manipulated for political reasons.

D.3 Varying control variables:

We first assess the sensitivity of the results to the choice of control variables. We (1)
drop all controls from our model except the state border lags in the lagged depen-
dent variable model and (2) add the following variables:
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• River size2 and Any river: To account for potentially non-linear effects of rivers
on ethnic geography and state borders, we include a squared term as well
as a dummy variable capturing whether an edge crosses any river.Strictly
speaking, most if not all edges cross minor water bodies such as creeks, which
are however not included in the Natural Earth Data used here.

• ∆ Longitude, ∆ Latitude: (Laitin, Moortgat and Robinson 2012) show that coun-
tries tend to have an east-west orientation due to low latitudinal environmen-
tal variation . If ethnic geographies follow the same pattern, the direction of
edges may present an omitted variable.We therefore include the distance an
edge traverses in each direction in decimal degrees.

• Population density in 1880 (estimate): High population-density regions may fea-
ture higher levels of ethnic diversity and smaller countries, which may bias
our estimates. We therefore add the average population density in 1880 es-
timated for the two vertices an edge connects. Population density estimates
are retrieved from Goldewijk, Beusen and Janssen (2010) who base their pro-
jection on all available (historical) sub-national census data combined with
higher-level population projections and environmental variables. Though
currently the best available data source, we note that their estimation proce-
dure may add post-treatment bias to our model.

• Cumulative altitude change: While our main analysis controls for the average
altitude along an edge, an edge’s ruggedness may explain the structure of
ethnic and state geographies. Rugged terrain may pose a natural barrier and
thus separate ethnic groups and cause country borders. We therefore add the
cumulative altitude change along an edge. This is computed by sampling
first a set of points at every 1km on each edge and then taking the sum of
absolute difference between each pair of neighboring points.

• Standard deviation of altitude: Following the same logic we construct an alter-
native (and more widely used) measure of an edge’s ruggedness as the sim-
ple standard deviation of the altitude of the points along an edge.

• Administrative borders: Lastly, we address concerns that our results are driven
by administrative borders. Lacking time-variant regional borders over the
past 150 years, we do so by controlling for regional-level borders in 1800
and 1900 retrieved from Nuessli (2010). To avoid bias in the estimated ef-
fect of ethnic boundaries from changes in administrative borders after 1900,
we restrict our ethnicity data to maps observed before 1886. Note that this
is a conservative test since administrative borders in 1900 have likely been
affected at least to some extent by ethnic geography.

Following the main analysis, we standardize all additional variables to fall
between 0 and 1 to compare coefficient magnitudes directly with the estimate of
ethnic boundary. Table A4 presents the results of the main specification, from drop-
ping the main covariates, and from adding the additional ones. We first note that
the size of the coefficient of interest, ethnic boundary, barely changes from the value
estimated in the main analysis. Hence, observed covariates do not bias our results.
If these are, ex ante, the most likely biasing spatial features, the result furthermore
suggests a very small magnitude of omitted variable bias.
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Table A4: Determinants of state borders in Europe, 1886–2011: Varying control variables

Main results No controls Add. controls Admin. borders
1: Baseline 2: LDV 3: Baseline 4: LDV 5: Baseline 6: LDV 7: Baseline 8: LDV

Constant −2.50∗ −3.01∗ −2.03∗ −2.69∗ −2.71∗ −0.87 −5.20∗ −5.63∗

[−3.04;−1.91] [−3.98;−2.47] [−2.15;−1.92] [−2.93;−2.45] [−3.57;−1.54] [−3.08; 0.24] [−5.81;−3.45] [−6.12;−3.33]
Ethnic boundaryt 1.22∗ 1.31∗ 1.23∗

[1.06; 1.40] [1.18; 1.51] [1.08; 1.41]
Ethnic boundaryt−1 1.02∗ 1.07∗ 0.98∗

[0.79; 1.24] [0.81; 1.28] [0.73; 1.19]
State borderpre−1886 0.78∗ 0.81∗

[0.57; 0.96] [0.49; 1.16]
State bordert−1 1.65∗ 1.66∗ 1.66∗ 1.75∗

[1.46; 1.96] [1.44; 1.90] [1.46; 2.03] [1.56; 2.08]
Deep lag 0.74∗ 0.75∗ 0.82∗ 0.41

[0.36; 1.15] [0.37; 1.13] [0.42; 1.27] [−0.03; 0.79]
Edge length 0.16 −0.34 −0.38 −1.79 5.29∗ 5.37

[−1.06; 1.06] [−1.79; 1.28] [−1.86; 0.82] [−3.28; 0.77] [1.17; 6.83] [−0.25; 6.18]
Elevation mean 0.24 0.15 0.27 −0.19 0.43 0.01

[−0.42; 0.80] [−0.82; 0.85] [−0.99; 1.33] [−2.01; 1.88] [−0.55; 1.07] [−1.57; 0.73]
Largest watershed 0.62∗ 0.76∗ 0.72∗ 0.84∗ 0.40∗ 0.56∗

[0.41; 0.81] [0.33; 1.10] [0.49; 0.95] [0.48; 1.19] [0.09; 0.63] [0.09; 1.03]
Largest river 0.28∗ 0.26 0.61 1.44∗ 0.18 0.14

[0.11; 0.48] [−0.03; 0.64] [−0.08; 1.50] [0.05; 2.33] [−0.04; 0.40] [−0.32; 0.52]
Largest river2 −0.93 −2.27

[−2.37; 0.14] [−3.85; 0.18]
Any river 0.51∗ 0.51

[0.04; 0.93] [−0.22; 1.08]
∆ Longitude −0.15 −2.25∗

[−1.08; 0.61] [−3.66;−0.65]
∆ Latitude 0.51 −0.82

[−0.41; 1.36] [−2.25; 0.89]
Pop. dens. 1880 1.34∗ −1.29

[0.50; 1.89] [−3.00; 0.10]
Cum. ∆ altitude −1.03 0.15

[−2.27; 0.24] [−1.71; 2.18]
Std. dev. altitude 1.45∗ 0.01

[0.45; 2.37] [−1.36; 1.43]
Adm. bord.1800 0.54∗ 0.33

[0.30; 0.83] [−0.05; 0.81]
Adm. bord.1900 0.63∗ 0.53

[0.38; 0.90] [−0.06; 1.03]

No. of periods 6 5 6 5 6 5 6 5
No. of vertices 6769 5412 6769 5412 6769 5412 4680 3870
No. of edges 17923 14243 17923 14243 17923 14243 12294 10170
No. of states 189 177 189 177 189 177 176 158

Notes: Each period t has a length of 25 years. 95% confidence intervals from parametric
bootstrap in parenthesis. ∗ Statistically significant at the 95% level.
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D.4 Unconditional effects of natural border determinants

We here assess the effects of natural border determinants, which have hitherto
served only as control variables, which makes direct interpretation of the respec-
tive coefficients difficult due to post-treatment bias from the inclusion of our ethnic
boundary and historical border measures. We therefore drop these variables for
this analysis. Because natural determinants such as rivers might have effects at a
lower spatial level than ethnic geography, we re-estimate our main specifications
for spatial graphs at spatial resolutions varying between 50 and 200km (see also
below in Subsection D.6).

While not providing a comprehensive and definitive analysis, results in Figure
A11 indicate consistent, positive effects of rivers and watersheds. These are size-
able and precisely estimated at high resolutions (50km) and more unstable at lower
spatial resolutions, both in the baseline and lagged dependent variable models.
We only find consistent positive effects for high-altitude edges at high spatial res-
olutions in the baseline model, suggesting that mountainous terrain did not affect
border change since 1886.

Figure A11: Point estimates of the effect of natural features on the partitioning of Europe
into states at varying spatial resolutions
Note: Models without ethnic boundary and deep lag of state borders. 95% CIs and estimate distributions result
from a parametric bootstrap with 120 iterations.

D.5 Varying the temporal structure of the data:

One important design choice at the outset of our main analysis is the choice of
the length of periods that structure the temporal dimension of our data. For our
main analysis, we measure state borders and ethnic geographies every 25 years,
starting in 1886 and ending in 2011. While representing a middle ground between
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very short and long periods, the period length of 25 years is arbitrarily set and our
results may differ substantially for differing period lengths.

This robustness check tests whether this is the case by varying the period in 10-
year steps length between 5 and 65 years.65 years is the longest period length for
which we can split the available data since 1886 into two periods: 1886–1951 and
1951–2016. As in the baseline analysis, each dataset starts in 1886 and thus exhibits
the following temporal structure: t ∈ 1886 + 0 p, 1886 + 1 p, ..., 1886 + I p, such that
1886 + I p <= 2019. This setup entails that our data for p = 35 and p = 45 end in
1991 and 1976, respectively, thus omitting part of the breakdown of the USSR and
former Yugoslavia.

Figure A12: Point estimates of the effect of ethnic boundaries on the partitioning of
Europe into states: Varying the period of the the length of periods t
Note: 95% CIs and estimate distributions result from a parametric bootstrap with 120 iterations.

Re-estimating our main specifications for each newly generated dataset yields
results that broadly conform with our main results. Summarized in Figure A12,
the estimates for the baseline (cross-sectional) model show coefficients that remain
stable with the length of periods. The estimate for the 25 year period data is close
to the average of all estimates.

The results for the lagged dependent variable model are somewhat more var-
ied but consistently yield substantive and statistically significant estimates for the
effect of ethnic boundaries. Upon closer inspection, we note that the downward de-
viations from our main result stem from the two datasets with a period of 35 and
45 year that omit the 1990s, an important period of ethnic secession in the former
Soviet Union and on the Balkans. The results therefore leave us confident that the
temporal structure of our main dataset does not substantially bias our results.

D.6 Varying the spatial lattice:

Similar to the temporal structure of our data, the making of the spatial lattice we
analyze is based on three potentially influential parameters. The first parameter is
the geographic location of the “anchor” of the lattice that determines the location
of all vertices. The second parameter is the spatial resolution of the network. The
third parameter is the spatial structure of the lattice.

Shifting the lattice anchor: The first parameter that determines the spatial make-
up of our baseline lattice consists in the location of the “anchoring” point (in our
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Figure A13: Point estimates of the effect of ethnic boundaries on the partitioning of
Europe into states: Shifting the spatial lattice
Note: Main estimates from Table 1 in red. Distributions result from re-estimating the main models 100 times,
with data from a randomly shifted hexagonal lattice.

case in the utmost south-west of the sampling area) from which the remainder of
the lattice is constructed. We test whether shifting that point – and thereby the rest
of the lattice – slightlyWe shift the lattice by displacing the anchoring point with
random draws from a uniform distribution between 1 and 10 decimal degrees in
each direction. along the north-south and east-west axes affects the results.

Following this procedure, we construct 100 lattices and recreate the entire dataset
for each. Re-estimating the baseline models for each resulting network gives rise to
a distribution of estimates for the baseline and lagged dependent variable specifi-
cations. Figure A13 shows that our main estimates are well centered at the 67th and
38st percentiles of the respective distributions. This shows that our main results are
not sensitive to the exact location of the anchoring point of our spatial lattice.

Varying lattice resolution: The second parameter that governs the spatial dimen-
sion of our data consists in the length of edges on our lattice. We here present re-
sults from alternative specifications that let this spatial resolution vary between 50
and 200 km, in steps of 25km. Networks with a lower resolution (200km) feature
less vertices and edges but may be able to capture more diffuse spatial patterns, i.e.
capturing effects of ethnic geographies even if they are not precisely marked on a
map or are in fact more gradual than our categorical maps suggest. Graphs with a
higher resolution (25km) are more informative and have more statistical power but
may miss more diffuse spatial effects due to their high level of detail. We therefore
create alternative datasets with the alternative spatial resolutions that use the same
spatial raw data to encode the very same variables as our main lattice.

Figure A14 presents the estimates for the effect of ethnic boundaries derived from
the baseline and lagged dependent variable model estimated with the alternative
lattices. The results show that our estimates slightly increase as we decrease the
resolution of our data beyond an edge length of 100km. This suggest that ethnic
geographies can have more diffuse effects that are not always captured by high-
resolution data. Reassuringly, the effects estimated at resolutions lower than 100km
are very similar and statistically indistinguishable from our baseline results.

Varying lattice structure The third parameter that determines the spatial makeup
of our data consists in the structure of the spatial lattice. In particular, the vertices
of the main lattice are the centroids of the tiles of a hexagonal tiling. There are two
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Figure A14: Effect of ethnic boundaries on the partitioning of Europe into states at varying
resolutions of the spatial lattice
Note: 95% CIs and estimate distributions result from a parametric bootstrap with 120 iterations.

Figure A15: Effect of ethnic boundaries on the partitioning of Europe into states using a
hexagonal, quadratic, triangular, and random lattice structure
Note: 95% CIs and estimate distributions result from a parametric bootstrap with 120 iterations.

other regular tilings, the quadratic and triangular tiling from which we can gen-
erate regular lattices.As in the hexagonal case, a tiling is transformed into a lattice
by connecting the centroid (vertex) of each tile with the centroids of neighboring
tiles. Together with the hexagonal tiling, the resulting lattices feature a constant
edge length which is only slightly disturbed by the earth’s surface curvature. How-
ever, quadratic and the triangular lattices feature fewer edges per vertex. Given a
constant edge-length, they are therefore, theoretically, less able to capture spatial
dependencies. A fourth possible lattice structure consists of a set of randomly lo-
cated vertices connected by edges from a simple Delaunay triangulation. While
the degree of vertices and edge-length in the random lattice is not constant, it is on
average similar to the hexagonal structure.

In order to test whether our results are robust to these alternative networks
structures, we construct additional lattices with a quadratic, triangular, and ran-
dom structure. For each lattice, we again construct the same set of variables as
in our main analysis and re-estimate our baseline and lagged dependent variable
specification. Figure A15 summarizes the resulting estimates for the effect of ethnic
boundaries. We note that the effect is increasing in the quadratic and triangular struc-
ture, yielding a similar effect as obtained when we decrease the spatial resolution
of the lattice (see above). The random lattice structure yields estimates that are in-
distinguishable from those estimated from the hexagonal structure. In sum, these
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Figure A16: Uncertainty estimates with varying burn-in rates
Note: 95% confidence intervals result from a parametric bootstrap with 120 iterations an a burn-in rate as
indicated on the x-axis. Shaded grey areas show distribution of bootstrapped estimates.

results suggests that the hexagonal lattice structure yields if at all conservative es-
timates doe to its increased ability of capturing spatial interdependence.

D.7 Burn-in rate in parametric bootstrap

We also assess whether the choice of the burn-in period (100 iterations) substan-
tively affects the uncertainty estimates produced by our parametric bootstrap (see
also Appendix Section A.4). Figure A16 plot the confidence intervals and param-
eter distribution retrieved from parametric bootstraps with a burn-in rate varying
between 1 and 1000 iterations. The results show that the choice of the burn-in rate
does not substantively affect the results above a very low burn-in rate of 10 iter-
ations. This result coincides with the stability of the results in most areas of the
parameter space assessed in our Monte Carlo experiments in Appendix Section
B.2.

D.8 Logistic regression with edge-level data

To demonstrate the advantage of the PSPM in accounting for spatial dependence,
we can alternatively estimate logistic regression that model the probability that
an edge in our network crosses a state borders in a given year. We here do so
with a cross-sectional baseline and lagged dependent variable specification that
directly mirror the main PSPM specification with the important exception that we
treat edges as fully independent.

Table A5 shows the logistic regression results and illuminates the effects of the
invalid independence assumption. We can directly compare these results to the
PSPM estimates for truly independent “bridge edges” (see discussion of the model
in main text). Doing so shows that the estimates for ethnic boundaries from the
logistic regression are approximately 2.5 times larger than in the corresponding
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Table A5: Edge level modeling: Logit results

Dependent variable:

Baseline model Lagged dependent variable
(1) (2)

Constant −5.14∗∗∗ −5.24∗∗∗
(0.14) (0.22)

Ethnic boundaryt 3.28∗∗∗

(0.07)

Ethnic boundaryt−1 2.51∗∗∗

(0.12)

State bordert−1 4.49∗∗∗

(0.11)

Deep lag 1.67∗∗∗

(0.14)

Controls yes yes
Observations 17,923 14,243
Log Likelihood -4,322.71 -1,924.55
Akaike Inf. Crit. 8,657.42 3,865.10

Notes: Each period t has a length of 25 years. Robust standard errors in parenthesis.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

.

PSPM models, implying odds ratios that are 12 times too large. In addition, we see
that standard errors are significantly smaller than in the PSPM. This overconfident
upward bias is explained by edges’ spatial dependencies, which are captured by
the PSPM.

D.9 Assessing regional variation: The role of population density

Why did ethnic geography shape border change since 1964 in Europe, to some
extent in Asia, but not elsewhere around the globe? We here present suggestive
evidence that supports Herbst’s (2000) claims about the centrality of population
densities as a driving force behind states’ competition over territory. Taking dense
population as a proxy for the value of local territory, we expect ethnic boundaries
to affect border change most in densely settled regions. In turn, low population
densities suggest territory of low value in which competition over people will have
precedence over competition over territory. We test this argument by recurring to
our data on all continents and estimating the LDV model with an interaction term
between logged population densityMeasured in 1880, from Goldewijk, Beusen and
Janssen (2010). and the ethnic boundary measure from GREG as well as the lagged
dependent variable measured in 1964.

The results in Figure A17 show that the effect of ethnic boundaries strongly in-
creases in population density globally and within Europe. The interaction effects
within Asia and Africa are much weaker and not statistically significant, suggesting
that the global result is driven by variation within Europe and variation between
Europe and Asia and the historically less densely settled Africa and the Ameri-
cas. While only suggestive, these results are in line with valuable territory driving

A26



Figure A17: Marginal effect of ethnic boundary in the LDV model by population density
(inhabitants/km2): Global and by continent with observed border changes.

territorial competition and the alignment of states with ethnic geography.

E Analysis of secessionist claims and conflict

This section presents the analysis of secessionist claims and conflict. The type of
the additional analysis partially mirrors the additional analyses conducted for the
analysis of the partitioning of Europe into states.

Data

The vertices of our baseline lattice G constitute the units of analysis,Appendix E.1
shows robustness to different spatial data structures. avoiding units that are either
spatially misaligned with our (in)dependent variables or defined based on state
borders. We code whether points are (1) claimed by a self-determination move-
ment, (2) fought over in a secessionist ethnic civil war, and (3) affected by a suc-
cessful secession. Yearly data on secessionist self-determination claims between
1946 and 2012 come from the GeoSDM dataset (Germann and Schvitz 2023, and
Appendix C.2). The Ethnic Power Relations data (Vogt et al. 2015) enlists the set-
tlement regions of ethnic groups associated with secessionist civil wars between
1946-2016. Lastly, we code secession when a point becomes part of a newly inde-
pendent state in the CShapes 2.0 data (Schvitz et al. 2022).

We expect that areas that are ethnically distinct from states’ core groups are
most likely to experience secessionism. We capture this logic by using our historical
ethnic maps to measure whether a point is ‘non-coethnic’ to their state’s capital.We
construct this variable in parallel to the network-based variable ethnic boundary (Eq.
(1), main text). Appendix E.1 shows robustness with pre-1886 ethnic data.

A27



Empirical strategy

We model the onset of secessionist claims, conflicts, and successful secession us-
ing a Cox Proportional Hazard Model, which mitigates the problem of successful
secession leading to selection out of the treatment group:Accounting for further po-
tential endogeneity by analyzing only point-years unaffected by post-1946 border
change increases effect sizes (Appendix E.1).

h(τ)j,t = h0(τ) exp(β1 non-coethnic capitalj,t + γ Xj,t + εj,τ ) (A12)

where h(τ)j,t is the expected onset risk of one of the three outcomes in point j
in calendar year t and relative time τ – the years since j became a member of its
current state.This counter starts with our data in 1946. The end of World War II as
a critical juncture arguably restarted the survival ‘clock’ in much of Europe. Next
to our variable of interest non-coethnic capitalj,t, we add controls Xj,t that account
for the most important joint structural causes of peripheral minority status and
secessionist conflict (e.g., Carter, Shaver and Wright 2019). These follow two logics.
The first mirrors the dyadic controls from our main analysis, capturing the distance
(logged), size of largest river and watershed, as well as the mean elevation between
point j and its capitalCj,t, and the fraction of centuries (1000-1790) in which the two
were part of the same state. The second logic focuses on points j only, with controls
for the local population density (logged; Goldewijk, Beusen and Janssen 2010), the
altitude and terrain slope (FAO 2015), as well as each points’ distance to the closest
border (logged).

We additionally estimate stratified models where the baseline hazard h0(t) varies
by country-year. Similar to country-year fixed effects, this accounts for time-varying
confounders within states (e.g., the breakup of the USSR). We cluster standard er-
rors on ‘stable state segments,’ sets of points that were always jointly members of
the same states.

E.1 Results

Main results: Table A6 presents the main results discussed in the paper.

Within borders from 1946 only: One important caveat of the main analysis is
that border changes observed during the temporal coverage of the panel, i.e. after
1946, are endogenous to secessionism which is the main object of interest here. Be-
cause secessionism reduces mismatches between ethnic boundaries and state bor-
ders leaving only the “hard” cases with low secession probability in the sample, we
may underestimate the effect of ethnic boundaries on the occurrence of secessionist
dynamics. We test this conjecture by analyzing points only as long as they are situ-
ated in the state they were member of in 1946 and drop all other point-years. Table
A7 presents the respective results. All coefficient increase substantially in size (on
average around 50 percent). This suggests that selection bias in the original anal-
ysis leads us to underestimate the effect of mismatches between state and ethnic
geographies on secessionism.
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Table A6: Ethnic boundaries and the onset of self-determination claims, conflict, and border
change

Cox Proportional Hazard Model

Secessionist Claim Secessionist Civil War Secession

(1) (2) (3) (4) (5) (6)

Non-coethnic capital 2.546∗∗∗ 1.684∗∗∗ 3.048∗∗∗ 2.211∗∗∗ 3.918∗∗∗ 2.924∗∗∗

(0.386) (0.460) (0.445) (0.480) (0.601) (0.771)

Events: 211 211 116 116 153 153
Country-year strata: no yes no yes no yes
Controls: yes yes yes yes yes yes
Observations 64,810 64,810 71,057 71,057 75,387 75,387
R2 0.007 0.004 0.005 0.003 0.007 0.005
Max. Possible R2 0.044 0.030 0.023 0.017 0.027 0.021
Log Likelihood -1,248.955 -833.687 -650.577 -514.381 -782.777 -620.219

Notes: Cox Proportional Hazard models. The unit of analysis is the point-year between 1946 and 2012.
Standard errors clustered on state-segments. Full results with control variables are reported in Table ??.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

.

Table A7: Ethnic boundaries and self-determination: Within 1946 borders only

Cox Proportional Hazard Model

Secessionist Claim Secessionist Civil War Secession

(1) (2) (3) (4) (5) (6)

Non-coethnic capital 2.320∗∗∗ 1.744∗∗∗ 3.227∗∗∗ 2.444∗∗∗ 3.893∗∗∗ 2.924∗∗∗

(0.323) (0.451) (0.500) (0.496) (0.602) (0.771)

Events: 200 200 104 104 152 152
Country-year strata: no yes no yes no yes
Controls: yes yes yes yes yes yes
Observations 58,805 58,805 64,217 64,217 68,403 68,403
R2 0.007 0.005 0.005 0.004 0.008 0.006
Max. Possible R2 0.045 0.032 0.022 0.018 0.030 0.024
Log Likelihood -1,154.087 -811.985 -548.017 -476.614 -775.799 -620.219

Notes: Cox Proportional Hazard models. The unit of analysis is the point-year between 1946 and 2012.
Standard errors clustered on state-segments. Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Using pre-1886 data on ethnic geography: Our analysis of secessionism may be
biased if changes in ethnic boundaries are caused by causes of subsequent state
border change. We therefore recur to ethnic settlement patterns mapped at the
earliest point, in the 50 years prior to 1886. Estimating their effect on post-1946
secessionim yields estimates of non-coethnic capital that are marginally smaller than
the baseline estimates but nevertheless of substantive size (Table A8). Given the
reduced precision of the data, standard errors slightly increase. Together with the
overall stability of ethnic geographies, this suggests that endogenous changes of
ethnic geographies are unlikely to cause the results.

Varying the spatial sampling of points: As in the PSPM analysis (see Section D.6
above), we vary the spatial sampling of points by (1) randomly shifting points 100
times, (2) varying the spatial resolution (50 to 200km), and (3) retrieving points
quadratic and triangular tiles, as well as from a spatial random draw. Our main
estimates are well centered in the distribution of estimates yielded from (1) (Figure
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Table A8: Ethnic boundaries and self-determination: Pre-1886 ethnic geography

Cox Proportional Hazard Model

Secessionist Claim Secessionist Civil War Secession

(1) (2) (3) (4) (5) (6)

Non-coethnic1886 capitalt 1.359∗∗ 0.971 2.733∗∗∗ 2.193∗∗ 2.941∗∗∗ 1.921∗∗∗

(0.636) (0.595) (0.668) (0.855) (0.604) (0.727)

Events: 211 211 116 116 153 153
Country-year strata: no yes no yes no yes
Controls: yes yes yes yes yes yes
Observations 64,972 64,972 71,207 71,207 75,537 75,537
R2 0.005 0.004 0.004 0.003 0.005 0.005
Max. Possible R2 0.044 0.030 0.023 0.018 0.027 0.021
Log Likelihood -1,309.532 -851.996 -666.253 -520.320 -840.963 -647.417

Notes: Cox Proportional Hazard models. The unit of analysis is the point-year between 1946 and 2012.
Standard errors clustered on state-segments. Full results with control variables are reported in Table ??.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

.

Figure A18: Secessionism robustness check: Shifting points (unit of analysis)
Note: Results from Table A6 in red. Solid lines denote distribution of main estimates, dotted lines distributions
of upper and lower bounds of 95% CIs. Distributions result from re-estimating the main models 100 times, with
data from a randomly shifted hexagonal lattice.

A18). Figure A19 demonstrates robust results when varying the spatial resolution
of our data. Lastly, Figure A20 shows that the sampling strategy used for construct-
ing our point-level data has no substantial effect on our results. In all, these results
suggest that our results are robust to the parameter choices behind the spatial data
structure.
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Figure A19: Estimates of the effect of non-coethnic capitals on secessionism at varying
spatial resolutions lattice

Figure A20: Estimates of the effect of non-coethnic capitals on secessionism with a
hexagonal, quadratic, triangular, and random lattice structure
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Philipp M Hunziker and Luc Girardin. 2015. “Integrating Data on Ethnicity,
Geography, and Conflict: The Ethnic Power Relations Dataset Family.” Journal of
Conflict Resolution 59(7):1327–1342.

Weidmann, Nils B., Jan Ketil Rød and Lars-Erik Cederman. 2010. “Representing
ethnic groups in space: A new dataset.” Journal of Peace Research 47(4):491–499.

A33

https://censusmosaic.demog.berkeley.edu/data/historical-gis-files
https://censusmosaic.demog.berkeley.edu/data/historical-gis-files

	Probabilistic Spatial Partition Model
	A distribution over partitionings
	Sampling from the model
	Estimation by Composite Likelihood
	Standard errors

	Model Evaluation: Monte Carlo Simulations
	Simulation setup
	Simulation results

	Data
	Historical ethnic map collection
	Data on self-determination claims: GeoSDM

	Robustness checks: Probabilistic Spatial Partition Model
	Border emergence vs. persistence and duration dynamics
	Varying measures of geospatial ethnic difference
	Varying control variables:
	Unconditional effects of natural border determinants
	Varying the temporal structure of the data:
	Varying the spatial lattice:
	Burn-in rate in parametric bootstrap
	Logistic regression with edge-level data
	Assessing regional variation: The role of population density

	Analysis of secessionist claims and conflict
	Results

	References (Appendix)

